OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 11 — Apr. 10, 2008
  • pp: 1729–1733

Vertical surface emitting open coupled-cavities based on photonic crystal surface modes

Deyin Zhao and Xunya Jiang  »View Author Affiliations


Applied Optics, Vol. 47, Issue 11, pp. 1729-1733 (2008)
http://dx.doi.org/10.1364/AO.47.001729


View Full Text Article

Enhanced HTML    Acrobat PDF (1351 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two types of vertical surface emitting photonic crystal cavities based on beaming mechanism and coupled surface modes are studied. It is shown that vertical emission with a zero divergence angle and a high quality factor can be easily achieved by the back-to-back cavity design. The periodic modulation to the cavity surface alters nonradiative surface modes into radiative surface modes, and the constructive interference of the radiative waves gives rise to vertical emission and improves the quality of the output beam. A high quality factor can be attributed to the nonradiative surface mode on the cavity back whose small part of energy can be transferred into the cavity surface by coupling. The resonant property and the coupling efficiency of the cavities are investigated and optimal cavity configurations are obtained. These open coupled-cavities are good candidates of highly directional light sources.

© 2008 Optical Society of America

OCIS Codes
(240.6690) Optics at surfaces : Surface waves
(140.3945) Lasers and laser optics : Microcavities
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optics at Surfaces

History
Original Manuscript: November 15, 2007
Revised Manuscript: February 25, 2008
Manuscript Accepted: March 4, 2008
Published: April 4, 2008

Citation
Deyin Zhao and Xunya Jiang, "Vertical surface emitting open coupled-cavities based on photonic crystal surface modes," Appl. Opt. 47, 1729-1733 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-11-1729


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  2. J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, Y. H. Lee, and D. H. Jang, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982-2984 (2000). [CrossRef]
  3. H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, Y. H. Lee, and J. S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032-3034 (2001). [CrossRef]
  4. A. Sugitatsu and S. Noda, “Room temperature operation of 2D photonic crystal slab defect-waveguide laser with optical pump,” Electron. Lett. 39, 213-215 (2003). [CrossRef]
  5. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with trianglar-lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316-318 (1999). [CrossRef]
  6. M. Notomi, H. Suzuki, and T. Tamamura, “Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps,” Appl. Phys. Lett. 78, 1325-1327 (2001). [CrossRef]
  7. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two- dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123-1125 (2001). [CrossRef] [PubMed]
  8. M. Rattier, T. F. Krauss, J.-F. Carlin, R. Stanley, U. Oesterle, R. Houdrè, C. J. M. Smith, R. M. DeLaRue, H. Benisty, and C. Weisbuch, “High extraction efficiency, laterally injected, light emitting diodes combining microcavities and photonic crystals,” Opt. Quantum Electron. 34, 79-89 (2002). [CrossRef]
  9. J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, “Slab-edge modes in two-dimensional photonic crystals,” Appl. Phys. Lett. 84, 3016-3018 (2004). [CrossRef]
  10. S. Xiao and M. Qiu, “Surface-mode microcavity,” Appl. Phys. Lett. 87, 111102-1-3 (2005). [CrossRef]
  11. W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Observation of surface photons on periodic dielectric arrays,” Opt. Lett. 18, 528-530 (1993). [CrossRef] [PubMed]
  12. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903(2004). [CrossRef] [PubMed]
  13. E. Moreno, F. J. Garcia-Vidal, and L. Martin-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402-1-4 (2004). [CrossRef]
  14. E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Efficient coupling of light into and out of a photonic crystal waveguide via surface modes,” Photonics Nanostruct. Fundam. Appl. 2, 97-102 (2004). [CrossRef]
  15. W. Smigaj, “Model of light collimation by photonic crystal surface modes,” Phys. Rev. B 75, 205430-1-8 (2007). [CrossRef]
  16. I. Bulu, H. Caglayan, and E. Ozbay, “Beaming of light and enhanced transmission via surface modes of photonic crystals,” Opt. Lett. 30, 3078-3080 (2005). [CrossRef] [PubMed]
  17. D.-S. Song, S.-H. Kim, H.-G. Park, C.-K. Kim, and Y.-H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80, 3901-3903(2002). [CrossRef]
  18. J. D. Joannopouls, R. D. Meade, and J. N. Winn, Photonic Crystal: Molding the Flow of Light (Princeton University Press, 1995).
  19. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited