OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 11 — Apr. 10, 2008
  • pp: 1797–1801

Polarization-splitting common-path interferometer based on a zero-twist liquid crystal display

Ignacio Moreno, Jeffrey A. Davis, Felix A. Klein, and Mark J. Mitry  »View Author Affiliations


Applied Optics, Vol. 47, Issue 11, pp. 1797-1801 (2008)
http://dx.doi.org/10.1364/AO.47.001797


View Full Text Article

Enhanced HTML    Acrobat PDF (5908 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a compact optical polarization-splitting common-path interferometer based on a zero-twist liquid crystal display (LCD). The LCD is encoded with a diffraction grating pattern and illuminated with a polarization state with both horizontal and vertical components. The polarization component perpendicular to the director axis of the liquid crystal molecules is not affected by the LCD and forms the reference beam. However, the polarization component parallel to the director axis is diffracted at an angle determined by the period of the grating. By imposing an analyzer polarizer, these two beams create an interferogram that can either display retardance patterns encoded onto the LCD or analyze external birefringent optical elements. The programmability of the system allows new ways of increasing the utility of the interferograms. Experimental results are provided, including the visualization of optical vortices with different and opposite topological charges.

© 2008 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(230.3720) Optical devices : Liquid-crystal devices
(230.5440) Optical devices : Polarization-selective devices
(230.6120) Optical devices : Spatial light modulators
(260.5430) Physical optics : Polarization

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: December 21, 2007
Manuscript Accepted: February 16, 2008
Published: April 9, 2008

Citation
Ignacio Moreno, Jeffrey A. Davis, Felix A. Klein, and Mark J. Mitry, "Polarization-splitting common-path interferometer based on a zero-twist liquid crystal display," Appl. Opt. 47, 1797-1801 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-11-1797


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Optical Measurement Techniques and Applications, P.K.Rastogi, ed. (Artech House, 1997).
  2. J. Gauvin, F. Gagnon, D. Gingras, M. Doucet, A. Bergeron, and H. H. Arsenault, “Phase calibration and applications of a liquid-crystal spatial light modulator,” Appl. Opt. 34, 5133-5139 (1995). [CrossRef] [PubMed]
  3. V. Laude, S. Maze, P. Chavel, and Ph. Réfrégier, “Amplitude and phase coding measurements of a liquid crystal television,” Opt. Commun. 103, 33-28 (1993). [CrossRef]
  4. S. Mallik, “Common-path interferometers,” in Optical Shop Testing, D. Malacara, ed. (John Wiley & Sons, 1992), Chap. 3.
  5. J. B. Bentley, J. A. Davis, M. A. Bandres, and J. C. Gutiérrez-Vega, “Generation of helical Ince-Gaussian beams with a liquid-crystal display,” Opt. Lett. 31, 649-651 (2006). [CrossRef] [PubMed]
  6. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. , 38, 5004-5013 (1999). [CrossRef]
  7. J. E. Bentley, J. A. Davis, J. Albero, and I. Moreno, “Self interferometer technique for visualization of phase patterns onto a liquid crystal display,” Appl. Opt. 45, 7791-7795(2006). [CrossRef] [PubMed]
  8. J. A. Davis, P. Tsai, D. M. Cottrell, T. Sonehara, and J. Amako, “Transmission variations in liquid crystal spatial light modulators caused by interference and diffraction effects,” Opt. Eng. 38, 1051 (1999). [CrossRef]
  9. J. A. Davis, J. Adachi, C. R. Fernández-Pousa, and I. Moreno, “Polarization beamsplitters using programmable polarization diffraction gratings,” Opt. Lett. 26, 587-589 (2001). [CrossRef]
  10. V. Rosso, Y. Renotte, S. Habraken, Y. Lion, F. Michel, V. Moreau, and B. Tilkens, “Almost-common path interferometers using the separation of polarization states for digital phase-shifting shearography,” Opt. Eng. 46, 105601 (2007). [CrossRef]
  11. T. Nomura, K. Kamiya, H. Miyashiro, K. Yoshikawa, and J. Tashiro, “Method to obtain a clear fringe pattern with a zone-plate interferometer,” Appl. Opt. 34, 2187-2193, (1995) [CrossRef] [PubMed]
  12. K. Crabtree, J. A. Davis, and I. Moreno, “Optical processing with vortex producing lenses,” Appl. Opt. 43, 1360-1367(2004). [CrossRef] [PubMed]
  13. M. Mansuripur and E. M. Wright, “Linear optical vortices,” Opt. Photonics News 10 (2), 40-43, (1999). [CrossRef]
  14. D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankivic, and T. Tschudi, “Generation of doughnut laser beams by use of a liquid crystal cell with a conversion efficiency near 100%,” Opt. Lett. 27, 1351-1353, (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited