OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 11 — Apr. 10, 2008
  • pp: 1851–1866

Remote sensing of aerosol plumes: a semianalytical model

Alexandre Alakian, Rodolphe Marion, and Xavier Briottet  »View Author Affiliations


Applied Optics, Vol. 47, Issue 11, pp. 1851-1866 (2008)
http://dx.doi.org/10.1364/AO.47.001851


View Full Text Article

Enhanced HTML    Acrobat PDF (3637 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A semianalytical model, named APOM (aerosol plume optical model) and predicting the radiative effects of aerosol plumes in the spectral range [ 0.4 , 2.5 μm ] , is presented in the case of nadir viewing. It is devoted to the analysis of plumes arising from single strong emission events (high optical depths) such as fires or industrial discharges. The scene is represented by a standard atmosphere (molecules and natural aerosols) on which a plume layer is added at the bottom. The estimated at-sensor reflectance depends on the atmosphere without plume, the solar zenith angle, the plume optical properties (optical depth, single-scattering albedo, and asymmetry parameter), the ground reflectance, and the wavelength. Its mathematical expression as well as its numerical coefficients are derived from MODTRAN4 radiative transfer simulations. The DISORT option is used with 16 fluxes to provide a sufficiently accurate calculation of multiple scattering effects that are important for dense smokes. Model accuracy is assessed by using a set of simulations performed in the case of biomass burning and industrial plumes. APOM proves to be accurate and robust for solar zenith angles between 0 ° and 60 ° whatever the sensor altitude, the standard atmosphere, for plume phase functions defined from urban and rural models, and for plume locations that extend from the ground to a height below 3 km . The modeling errors in the at-sensor reflectance are on average below 0.002. They can reach values of 0.01 but correspond to low relative errors then (below 3% on average). This model can be used for forward modeling (quick simulations of multi/hyperspectral images and help in sensor design) as well as for the retrieval of the plume optical properties from remotely sensed images.

© 2008 Optical Society of America

OCIS Codes
(280.1100) Remote sensing and sensors : Aerosol detection
(290.1090) Scattering : Aerosol and cloud effects

ToC Category:
Remote sensing and sensors

History
Original Manuscript: August 6, 2007
Revised Manuscript: December 18, 2007
Manuscript Accepted: February 13, 2008
Published: April 4, 2008

Citation
Alexandre Alakian, Rodolphe Marion, and Xavier Briottet, "Remote sensing of aerosol plumes: a semianalytical model," Appl. Opt. 47, 1851-1866 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-11-1851


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. J. Kaufman, D. Tanré, H. R. Gordon, T. Nakajima, J. Lenoble, R. Frouin, H. Grassl, B. M. Herman, M. D. King, and P. M. Teillet, “Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect,” J. Geophys. Res. 102, 14581-14599 (1997). [CrossRef]
  2. Y. J. Kaufman, D. Tanré, and O. Boucher, “A satellite view of aerosols in the climate system,” Nature 419, 215-223 (2002).
  3. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 25, 377-445 (1908).
  4. Y. J. Kaufman and C. Sendra, “Algorithm for automatic atmospheric corrections to visible and near-ir satellite imagery,” Int. J. Remote Sens. 9, 1357-1381 (1988). [CrossRef]
  5. Y. J. Kaufman, A. Wald, L. Remer, B. Gao, R. Li, and L. Flynn, “The modis 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286-1297 (1997).
  6. J. Martonchik, D. Diner, R. Kahn, T. Ackerman, M. Verstraete, B. Pinty, and H. Gordon, “Techniques for the retrieval of aerosol properties over land and ocean using multiangle imagery,” IEEE Trans. Geosci. Remote Sens. 36, 1212-1227 (1998).
  7. J. Veefkind, G. de Leeuw, P. Stammes, and R. Koeljemeier, “Regional distribution of aerosol over land derived from ASTR-2 and GOME,” Remote Sens. Environ. 74, 377-386(2000). [CrossRef]
  8. M. Leroy, J. L. Deuzé, F. M. Bréon, O. Hautecoeur, M. Herman, J. C. Buriez, D. Tanré, S. Bouffiès, P. Chazette, and J. L. Roujean, “Retrieval of atmospheric properties and surface bidirectional reflectances over land from POLDER/ADEOS,” J. Geophys. Res. 102, 17023-17037 (1997). [CrossRef]
  9. D. Winker, M. Vaughan, and W. Hunt, “The CALIPSO mission and initial results from CALIOP,” Proc. SPIE 6409, 1-8(2006).
  10. H. Akimoto, “Global air quality and pollution,” Science 302, 1716-1719 (2003). [CrossRef]
  11. K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502-2509 (1988).
  12. J. Fischer and H. Grassl, “Detection of cloud-top height from reflected radiances within the oxygen A band. Part 1. Theoretical studies,” J. Appl. Meteorol. 30, 1245-1259 (1991).
  13. F. Fischer, L. Schuller, and R. Preusker, “Cloud top pressure,” MERIS Algorithm Theoretical Basis Doc. ATBD 2.3 (Free University of Berlin, (2000).
  14. F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, “The MODTRAN 2/3 Report and LOWTRAN 7 MODEL,” Technical report, prepared by Ontar Corporation for PL/GPOS (1996).
  15. Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. I. A semianalytical model,” Appl. Opt. 37, 6329-6338 (1998).
  16. S. Jacquemoud, F. Baret, B. Andrieu, F. M. Danson, and K. Jaggard, “Extraction of vegetation biophysical parameters by inversion of the prospect+sail models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors,” Remote Sens. Environ. 52, 163-172 (1995).
  17. A. A. Kokhanovsky and V. V. Rozanov, “The physical parametrization of the top-of-atmosphere reflection function for a cloudy atmosphere-underlying surface system: the oxygen A-band case study,” J. Quant. Spectrosc. Radiat. Transfer 85, 35-55 (2004). [CrossRef]
  18. S. Chandrasekhar, Radiative Transfer (Dover, 1960).
  19. G. E. Thomas and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge University Press, 1999).
  20. N. F. Larsen and K. Stamnes, “Use of shadows to retrieve water vapor in hazy atmospheres,” Appl. Opt. 44, 6986-6994(2005). [CrossRef]
  21. K. Stamnes, “Reflection and transmission by a vertically inhomogeneous planetary atmosphere,” Planet. Space Sci. 30, 727-732 (1982). [CrossRef]
  22. V. V. Rozanov and A. A. Kokhanovsky, “On the molecular-aerosol scattering coupling in remote sensing of aerosol from space,” IEEE Trans. Geosci. Remote Sens. 43, 1536-1541(2005).
  23. E. P. Shettle and R. W. Fenn, Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties (Air Force Geophysics Laboratory, 1979).
  24. J. S. Reid, R. Koppmann, T. F. Eck, and D. P. Eleuterio, “A review of biomass burning emissions. Part II: intensive physical properties of biomass burning particles,” Atmos. Chem. Phys. Discuss. 4, 5135-5200 (2004).
  25. O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of Absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590-608 (2002). [CrossRef]
  26. M. Mallet, J. C. Roger, S. Despiau, O. Dubovik, and J. P. Putaud, “Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE,” Atmos. Res. 69, 73-97 (2003). [CrossRef]
  27. I. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70-83 (1941).
  28. L. S. Lasdon, A. D. Waren, A. Jain, and M. Ratner, “Design and testing of a generalized reduced gradient code for nonlinear programming,” ACM Trans. Math. Softw. 4, 34-50 (1978). [CrossRef]
  29. R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227-248 (1998).
  30. J. Trentmann, M. O. Andreae, H.-F. Graf, P. V. Hobbs, R. D. Ottmar, and T. Trautmann, “Simulation of a biomass burning plume: comparison of model results with observations,” J. Geophys. Res. 107 (2002). [CrossRef]
  31. R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kneizys, J. D. Mill, L. S. Rothmann, E. P. Shettle, and F. E. Volz, Handbook of Geophysics and the Space Environment, Optical and Infrared Properties of the Atmosphere (A. S. Jursa, 1985).
  32. R. A. Sutherland and R. K. Khanna, “Optical properties of organic-based aerosols produced by burning vegetation,” Aerosol Sci. Technol. 14, 331-342 (1991). [CrossRef]
  33. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  34. J. S. Reid, T. F. Eck, S. A. Christopher, R. Koppmann, O. Dubovik, D. P. Eleuterio, B. N. Holben, E. A. Reid, and J. Zhang, “A review of biomass burning emissions. Part iii. Intensive optical properties of biomass burning particles,” Atmos. Chem. Phys. Discuss. 4, 5201-5260 (2004).
  35. A. Alakian, R. Marion, and X. Briottet, “Hyperspectral remote sensing of biomass burning aerosol plumes: sensitivity to optical properties modeling,” Proc. SPIE 6362, 63620D (2006). [CrossRef]
  36. A. Angström, “On the atmospheric transmission of Sun radiation and on dust in the air,” Geogr. Ann. 12, 130-159 (1929).
  37. M. D. King and D. M. Byrne, “A method for inferring total ozone content from spectral variation of total optical depth obtained with a solar radiometer,” J. Amos. Sci. 33, 2242-2251(1976).
  38. S. Bojinski, D. Schläpfer, M. E. Schaepman, and J. Keller, “Aerosol mapping over rugged heterogeneous terrain with imaging spectrometer data,” Proc. SPIE 4816, 108-1199 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited