OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 11 — Apr. 10, 2008
  • pp: 1907–1912

Fabrication and characterization of dye mixture doped polymer optical fiber as a broad wavelength optical amplifier

M. Sheeba, M. Rajesh, V. P. N. Nampoori, and P. Radhakrishnan  »View Author Affiliations

Applied Optics, Vol. 47, Issue 11, pp. 1907-1912 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1173 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Rhodamine 6G and Rhodamine B dye mixture doped polymer optical fiber amplifier (POFA), which can operate in a broad wavelength region ( 60 nm ), has been successfully fabricated and tested. Tunable operation of the amplifier over a broad wavelength region is achieved by mixing different ratios of the dyes. The dye doped POFA is pumped axially using 532 nm , 10 ns laser pulses from a frequency doubled Q-switched Nd: YAG laser and the signals are taken from an optical parametric oscillator. A maximum gain of 22.3 dB at 617 nm wavelength has been obtained for a 7 cm long dye mixture doped POFA. The effects of pump energy and length of the fiber on the performance of the fiber amplifier are also studied. There exists an optimum length for which the amplifier gain is at a maximum value.

© 2008 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2280) Fiber optics and optical communications : Fiber design and fabrication

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: December 18, 2007
Revised Manuscript: February 13, 2008
Manuscript Accepted: February 18, 2008
Published: April 7, 2008

M. Sheeba, M. Rajesh, V. P. N. Nampoori, and P. Radhakrishnan, "Fabrication and characterization of dye mixture doped polymer optical fiber as a broad wavelength optical amplifier," Appl. Opt. 47, 1907-1912 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Koike, T. Ishigure, and E. Nihei, “High-bandwidth graded-index polymer optical fiber,” J. Lightwave Technol. 13, 1475-1489 (1995). [CrossRef]
  2. M. A. van Eijkelenborg, A. Argyros, G. Barton, I. M. Bassett, M. Fellew, G. Henry, N. A. Issa, M. C. J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, “Recent progress in microstructured polymer optical fiber fabrication and characterisation,” Opt. Fiber Technol. 9, 199-209 (2003).
  3. F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid- filled hollow core microstructured polymer optical fiber,” Opt. Express 14, 4135-4140 (2006). [CrossRef]
  4. T. Ishigure, Y. Koike, and J. W. Fleming, “Optimum index profile of the perfluorinated polymer based GI polymer optical fiber and its dispersion properties,” J. Lightwave Technol. 18, 178-184 (2000). [CrossRef]
  5. H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 824-826 (2001).
  6. K. Kuriki and Y. Koike, “Plastic optical fiber lasers and amplifiers containing lanthanide complexes,” Chem. Rev. 102, 2347-2356 (2002). [CrossRef]
  7. G. D. Peng, P. K. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol. 14, 2215-2223 (1996). [CrossRef]
  8. A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, K. Fujii, T. Yamamoto, and K. Sasaki, “Basic performance of an organic dye-doped polymer optical fiber amplifier,” Appl. Opt. 34, 988 (1995).
  9. A. Tagaya, Y. Koike, T. Kinoshita, E. Nihei, T. Yamamoto, and K. Sasaki, “Polymer optical fiber amplifier,” Appl. Phys. Lett. 63, 883-884 (1993). [CrossRef]
  10. A. Tagaya, S. Teramoto, E. Nihei, K. Sasaki, and Y. Koike, “High-power and high-gain organic dye-doped polymer optical fiber amplifiers: novel techniques for preparation and spectral investigation,” Appl. Opt. 36 (1997).
  11. A. Tagaya, S. Teramoto, T. Yamamoto, K. Fujii, E. Nihei, Y. Koike, and K. Sasaki, “Theoretical and experimental investigation of rhodamine B doped polymer optical fiber amplifiers,” IEEE J. Quantum Electron. 31, 2215-2220 (1995).
  12. H. Liang, Q. Zhang, Z. Zheng, H. Ming, Z. Li, J. Xu, B. Chen, and H. Zhao, “Optical amplification of Eu(DBM)3 phen-doped polymer optical fiber,” Opt. Lett. 29, 477-479 (2004). [CrossRef]
  13. M. Karimi, N. Granpayeh, and M. K. Morravegfarshi, “Analysis and design of a dye doped polymer optical fiber amplifier,” Appl. Phys. B 78, 387-396 (2004).
  14. H. Liang, Z. Zheng, Z. Li, J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, “Fabrication and amplification of rhodamine B doped step-index polymer optical fiber,” J. Appl. Polym. Sci. 93, 681-685 (2004). [CrossRef]
  15. M. Rajesh, M. Sheeba, K. Geetha, C. P. G. Vallabhan, P. Radhakrishnan, and V. P. N. Nampoori, “Fabrication and characterization of dye doped polymer optical fiber as a light amplifier,” Appl. Opt. 46, 106-112 (2007). [CrossRef]
  16. M. Rajesh, K. Geetha, M. Sheeba, C. P. G. Vallabhan, P. Radhakrishnan, and V. P. N. Nampoori, “Characterisation of rhodamine 6G doped polymer optical fiber by side illumination fluorescence,” Opt. Eng. 45, 075003 (2006).
  17. A. Argyros, M. A. van Eijkelenborg, S. D. Jackson, and R. P. Mildren, “Microstructured polymer fiber laser,” Opt. Lett. 29, 1882-1884 (2004). [CrossRef]
  18. M. A. Reilly, B. Coleman, E. Y. B. Pun, R. V. Penty, and I. H. White, “Optical gain at 650 nm from a polymer waveguide with dye doped cladding,” Appl. Phys. Lett. 87, 231116 (2005). [CrossRef]
  19. X. Xu, “Properties of Nd3+ -doped polymer optical fiber amplifiers,” Opt. Commun. 225, 55-59 (2003). [CrossRef]
  20. M. G. Kuzyk, Polymer Fiber Optics--Materials, Physics and Applications (Taylor and Francis, 2007).
  21. Y. Yang, J. Zou, H. Rong, G. D. Qian, Z. Y. Wang, and M. Q. Wang, “Influence of various coumarin dyes on the laser performance of laser dyes co-doped into ORMOSILs,” Appl. Phys. B 86, 309-313 (2006).
  22. B. J. Scott, M. H. Bartl, G. Wirnsberger, and G. D. Stucky, “Energy transfer in dye-doped mesostructured composites,” J. Phys. Chem. A 107, 5499-5502 (2003). [CrossRef]
  23. W. Daum, J. Krauser, P. E. Zamzow, and O. Ziemann, POF--Polymer Optical Fibers for Data Communication (Springer, 2002).
  24. M. Sheeba, K. J. Thomas, M. Rajesh, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Multimode laser emission from dye doped polymer optical fiber,” Appl. Opt. 46, 8089-8094 (2007).
  25. G. A. Kumar, V. Thomas, G. Thomas, N. V. Unnikrishnan, and V. P. N. Nampoori, “Energy transfer in Rh 6G:Rh B system in PMMA matrix under cw laser excitation,” J. Photochem. Photobiol. A 153, 145-151 (2002).
  26. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836-850 (1953). [CrossRef]
  27. R. G. Bennet, “Radiationless intermolecular energy transfer. I. Singlet-singlet transfer,” J. Chem. Phys. 41, 3037-3040 (1964). [CrossRef]
  28. T. Forster, “Transfer mechanisms of electronic excitations,” Discuss. Faraday Soc. 27, 7-17 (1959). [CrossRef]
  29. E. Sahar and D. Treves, “Excited singlet-state absorption in dyes and their effect on dye lasers,” IEEE J. Quantum Electron. 13, 962-967 (1977).
  30. N. V. Unnikrishnan, H. S. Bhatti, and R. D. Singh, “Energy transfer in dye mixtures studied by laser fluorimetry,” J. Mod. Opt. 31, 983-987 (1984). [CrossRef]
  31. P. J. Sebastian and K. Sathianandan, “Donor concentration dependence of the emission peak in rhodamine 6G-rhodamine B energy transfer dye laser,” Opt. Commun. 35, 113-114 (1980). [CrossRef]
  32. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, 1994), p. 382.
  33. B. Min, H. Yoon, W. J. Lee, and N. Park, “Coupled structure for wide-band EDFA with gain and noise figure improvements from C to L-band ASE injection,” IEEE Photon. Technol. Lett. 12, 480-482 (2000).
  34. J. Lee, Uh-Chan Ryu, S. J. Ahn, and N. Park, “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section,” IEEE Photon. Technol. Lett. 11, 42-44 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited