OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 11 — Apr. 10, 2008
  • pp: 1913–1921

Side illumination fluorescence emission characteristics from a dye doped polymer optical fiber under two-photon excitation

M. Sheeba, M. Rajesh, S. Mathew, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan  »View Author Affiliations


Applied Optics, Vol. 47, Issue 11, pp. 1913-1921 (2008)
http://dx.doi.org/10.1364/AO.47.001913


View Full Text Article

Enhanced HTML    Acrobat PDF (2575 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two-photon excited (TPE) side illumination fluorescence studies in a Rh6G–RhB dye mixture doped polymer optical fiber (POF) and the effect of energy transfer on the attenuation coefficient is reported. The dye doped POF is pumped sideways using 800 nm , 70 fs laser pulses from a Ti:sapphire laser, and the TPE fluorescence emission is collected from the end of the fiber for different propagation distances. The fluorescence intensity of RhB doped POF is enhanced in the presence of Rh6G as a result of energy transfer from Rh6G to RhB. Because of the reabsorption and reemission process in dye molecules, an effective energy transfer is observed from the shorter wavelength part of the fluorescence spectrum to the longer wavelength part as the propagation distance is increased in dye doped POF. An energy transfer coefficient is found to be higher at shorter propagation distances compared to longer distances. A TPE fluorescence signal is used to characterize the optical attenuation coefficient in dye doped POF. The attenuation coefficient decreases at longer propagation distances due to the reabsorption and reemission process taking place within the dye doped fiber as the propagation distance is increased.

© 2008 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2400) Fiber optics and optical communications : Fiber properties
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: December 3, 2007
Revised Manuscript: February 8, 2008
Manuscript Accepted: February 13, 2008
Published: April 7, 2008

Citation
M. Sheeba, M. Rajesh, S. Mathew, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, "Side illumination fluorescence emission characteristics from a dye doped polymer optical fiber under two-photon excitation," Appl. Opt. 47, 1913-1921 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-11-1913


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Koike, T. Ishigure, and E. Nihei, “Highbandwidth graded-index polymer optical fiber,” J. Lightwave Technol. 13, 1475-1489 (1995). [CrossRef]
  2. M. A. van Eijkelenborg, A. Argyros, G. Barton, I. M. Bassett, M. Fellew, G. Henry, N. A. Issa, M. C. J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, “Recent progress in microstructured polymer optical fibre fabrication and characterization,” Opt. Fiber Technol. 9, 199-209 (2003). [CrossRef]
  3. F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14, 4135-4140 (2006). [CrossRef] [PubMed]
  4. M. R. Sheeba, K. Geetha, C. P. G. Vallabhan, P. Radhakrishnan, and V. P. N. Nampoori, “Fabrication and characterization of dye doped polymer optical fiber as a light amplifier,” Appl. Opt. 46, 106-112 (2007). [CrossRef]
  5. K. Kuriki, T. Kobayashi, N. Imai, T. Tamura, S. Nishihara, Y. Nishizawa, A. Tagaya, and Y. Koike, “High efficiency organic dye doped polymer optical fiber lasers,” Appl. Phys. Lett. 77, 331-333 (2000). [CrossRef]
  6. R. Gvishi, G. Ruland, and P. N. Prasad, “New laser medium: dye-doped sol-gel fiber,” Opt. Commun. 126, 66-72 (1996). [CrossRef]
  7. S. Muto, A. Ando, O. Yoda, T. Hanawa, and H. Ito, “Tunable laser by sheet of dye doped plastic fibers,” Trans. Inst. Electron. Inf. Commun. Eng. J70-C, 1479-1484 (1987).
  8. M. Kuwata-Gonokami, R. H. Jordan, A. Dodabalapur, H. E. Katz, M. L. Schilling, R. E. Slusher, and S. Ozawa, “Polymer microdisc and microring lasers,” Opt. Lett. 20, 2093-2095 (1995). [CrossRef] [PubMed]
  9. A. Otomo, S. Yokoyama, T. Nakahama, and S. Mashiko, “Super narrowing mirrorless laser emission in dendrimer doped polymer waveguides,” Appl. Phys. Lett. 77, 3881-3883 (2000). [CrossRef]
  10. K. Svoboda and R. Yasuda, “Principles of two-photon excitation microscopy and its applications to neuroscience,” Neuron 50, 823-839 (2006). [CrossRef] [PubMed]
  11. E. Heumann, S. Bar, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, “Semiconductor-laser-pumped high-power upconversion laser,” Appl. Phys. Lett. 88, 061108(2006). [CrossRef]
  12. G. Qin, S. Huang, Y. Feng, A. Shirakawa, M. Musha, and K. I. Ueda, “Power scaling of Tm3+ doped ZBLAN blue upconversion fiber lasers: modeling and experiments,” Appl. Phys. B 82, 65-70 (2006). [CrossRef]
  13. M. Goppert-Mayer, “Ueber elementarakte mit zwei quanenspreungen,” Ann. Phys. 9, 273-294 (1931). [CrossRef]
  14. W. K. Kaiser and C. G. B. Garrett, “Two-photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7, 229-231 (1961). [CrossRef]
  15. X. H. Yang, J. M. Hays, W. Shan, and J. J. Song, “Two-photon pumped blue lasing in bulk ZnSe and ZnSSe,” Appl. Phys. Lett. 62, 1071-1073 (1993). [CrossRef]
  16. G. S. He, L. Yuan, P. N. Prasad, A. Abbotto, A. Facchetti, and G. A. Pagani, “Two photon pumped frequency upconversion lasing of a new blue green dye material,” Opt. Commun. 140, 49-52 (1997). [CrossRef]
  17. A. S. Kwok, A. Serpenguzel, W. F. Hsieh, and R. K. Chang, “Two-photon-pumped lasing in microdroplets,” Opt. Lett. 17, 1435-1437 (1992). [CrossRef] [PubMed]
  18. G. S. He, C. F. Zhao, J. D. Bhawalkar, and P. N. Prasad, “Two-photon pumped cavity lasing in novel dye doped bulk matrix rods,” Appl. Phys. Lett. 67, 3703-3705 (1995). [CrossRef]
  19. G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Upconversion dye-doped polymer fiber laser,” Appl. Phys. Lett. 68, 3549-3551 (1996). [CrossRef]
  20. A. Mukherjee, “Two photon pumped upconverted lasing in dye doped polymer waveguides,” Appl. Phys. Lett. 62, 3423-3425(1993). [CrossRef]
  21. D. C. Nguyen, G. E. Faulkner, and M. Dulick, “Blue-green (450 nm) upconversion Tm3+:YLF laser,” Appl. Opt. 28, 3553-3555 (1989). [CrossRef] [PubMed]
  22. Y. Mita, Y. Wang, and S. Shionoya, “High brightness blue and green light sources pumped with a 980 nm emitting laser diode,” Appl. Phys. Lett. 62, 802-804 (1993). [CrossRef]
  23. D. W. Garwey, K. Zimmerman, P. Young, J. Tostenrude, J. S. Townsend, Z. Zhou, M. Lobel, M. Dayton, R. Wittorf, and M. G. Kuzyk, “Single mode nonlinear optical polymer fibers,” J. Opt. Soc. Am. B 13, 2017-2023 (1996). [CrossRef]
  24. T. Kaino, “Waveguide fabrication using organic nonlinear optical materials,” J. Opt. A, Pure Appl. Opt. 2, R1-R7 (2000). [CrossRef]
  25. R. J. Kruhlak and M. G. Kuzyk, “Side-illumination fluorescence spectroscopy. I. Principles,” J. Opt. Soc. Am. B 16, 1749-1755 (1999). [CrossRef]
  26. R. J. Kruhlak and M. G. Kuzyk, “Side-illumination fluorescence spectroscopy. II. Applications to squarine dye-doped polymer optical fibers,” J. Opt. Soc. Am. B 16, 1756-1767(1999). [CrossRef]
  27. M. Sheeba, K. J. Thomas, M. Rajesh, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Multimode laser emission from dye doped polymer optical fiber,” Appl. Opt. 46, 8089-8094 (2007). [CrossRef] [PubMed]
  28. C. Xu and W. W. Webb, “Measurement of two photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13, 481-491 (1996). [CrossRef]
  29. G. A. Kumar, V. Thomas, G. Thomas, N. V. Unnikrishnan, and V. P. N. Nampoori, “Energy Transfer in Rh 6G: Rh B system in PMMA matrix under CW laser excitation,” J. Photochem. Photobiol. A 153, 145-151 (2002). [CrossRef]
  30. N. V. Unnikrishnan, H. S. Bhatti, and R. D. Singh, “Energy transfer in dye mixtures studied by laser fluorimetry,” J. Mod. Opt. 31, 983-987 (1984). [CrossRef]
  31. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006), p. 445.
  32. D. Seth, D. Chakrabarty, A. Chakraborty, and N. Sarkar, “Study of energy transfer from 7-amino coumarin donors to rhodamine 6G acceptor in non-aqueous reverse micelles,” Chem. Phys. Lett. 401, 546-552 (2005). [CrossRef]
  33. C h. Scharf, K. Peter, P. Bauer, Ch. Jung, M. Thelakkat, and J. Kohler, “Towards the characterisation of energy-transfer processes in organic donor-acceptor dyads based on triphenyldiamine and perylenebisimides,” Chem. Phys. 328, 403-409(2006). [CrossRef]
  34. G. Cerulla, S. Stagira, M. Zavelani-Rossi, S. D. Silvestri, T. Virgili, D. G. Lidzey, and D. D. C. Bradley, “Ultrafast Forster transfer dynamics in tetraphenylporphyrin doped poly(9,9-dioctylfluorene),” Chem. Phys. Lett. 335, 27-33 (2001). [CrossRef]
  35. A. V. Deshpande and E. B. Namdas, “Correlation between lasing and photo physical performance of dyes in polymethylmethacrylate,” J. Lumin. 91, 25-31 (2000). [CrossRef]
  36. J. Brandrup, E. H. Immergut, and E. S. Grulke, “Refractive indices of polymers” in Polymer Handbook, 4th ed. (Wiley, 1999), Vol. 1, p. 571.
  37. P. R. Selvin, “The renaissance of fluorescence resonance energy transfer,” Nat. Struct. Biol. 7, 730-734 (2000). [CrossRef] [PubMed]
  38. J. N. Miller, “Fluorescence energy transfer methods in bio analysis,” Analyst (Amsterdam) 130, 265-270 (2005).
  39. R. D. Singh, A. K. Sharman, N. V. Unnikrishnan, and D. Mohan, “Energy transfer study on Coumarin 30-Rhodamine 6G dye mixture using a laser fluorimeter,” J. Mod. Opt. 37, 419-425(1990). [CrossRef]
  40. P. J. Sebastian and K. Sathianandan, “Donor concentration dependence of the emission peak in rhodamine 6G-rhodamine B energy transfer dye laser,” Opt. Commun. 35, 113-114 (1980). [CrossRef]
  41. M. Rajesh, K. Geetha, M. Sheeba, C. P. G. Vallabhan, P. Radhakrishnan, and V. P. N. Nampoori, “Characterisation of rhodamine 6G doped polymer optical fiber by side illumination fluorescence,” Opt. Eng. 45, 075003 (2006). [CrossRef]
  42. K. Geetha, M Rajesh, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Loss characterisation in rhodamine 6G doped polymer film waveguide by side illumination fluorescence,” J. Opt. A Pure. Appl. Opt 6, 379-383 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited