OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 11 — Apr. 10, 2008
  • pp: 1940–1946

Dual random phase encoding: a temporal approach for fiber optic applications

Christian Cuadrado-Laborde, Ricardo Duchowicz, Roberto Torroba, and Enrique E. Sicre  »View Author Affiliations


Applied Optics, Vol. 47, Issue 11, pp. 1940-1946 (2008)
http://dx.doi.org/10.1364/AO.47.001940


View Full Text Article

Enhanced HTML    Acrobat PDF (6857 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze the dual random phase encoding technique in the temporal domain to evaluate its potential application for secure data transmission in fiber optic links. To take into account the optical fiber multiplexing capabilities, the noise content of the signal is restricted when multiple channels are transmitted over a single fiber optic link. We also discuss some mechanisms for producing encoded time-limited as well as bandwidth-limited signals and a comparison with another recently proposed technique is made. Numerical simulations have been carried out to analyze the system performance. The results indicate that this multiplexing encryption method could be a good alternative compared with other well-established methods.

© 2008 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.4230) Fiber optics and optical communications : Multiplexing
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 8, 2007
Revised Manuscript: November 23, 2007
Manuscript Accepted: January 29, 2008
Published: April 9, 2008

Citation
Christian Cuadrado-Laborde, Ricardo Duchowicz, Roberto Torroba, and Enrique E. Sicre, "Dual random phase encoding: a temporal approach for fiber optic applications," Appl. Opt. 47, 1940-1946 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-11-1940


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Réfrégier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767-769 (1995).
  2. N. Towghi, B. Javidi, and Z. Luo, “Fully phase encrypted image processor,” J. Opt. Soc. Am. A 16, 1915-1927 (1999). [CrossRef]
  3. B. Javidi, N. Towghi, N. Maghzi, and C. Verrall, “Error-reduction techniques and error analysis for fully phase- and amplitude-based encryption,” Appl. Opt. 39, 4117-4130 (2000).
  4. O. Matoba and B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24, 762-764 (1999).
  5. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random encoding in the fractional Fourier domain,” Opt. Lett. 25, 887-889 (2000). [CrossRef]
  6. G. Unnikrishnan and K. Singh, “Double random fractional Fourier-domain encoding for optical security,” Opt. Eng. 39, 2853-2859 (2000).
  7. S. Granieri, O. Trabocchi, and E. E. Sicre, “Fractional Fourier transform applied to spatial filtering in the Fresnel domain,” Opt. Commun. 119, 275-278 (1995). [CrossRef]
  8. G. Situ and J. Zhang, “Double random-phase encoding in the Fresnel domain,” Opt. Lett. 29, 1584-1586 (2004). [CrossRef]
  9. G. Situ and J. Zhang, “A lensless optical security system based on computer generated phase only,” Opt. Commun. 232, 115-122 (2004).
  10. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951-1963 (1994).
  11. A. Papoulis, “Pulse compression, fiber communications, and diffraction: a unified approach,” J. Opt. Soc. Am. A 11, 3-13 (1994).
  12. J. Azaña, L. R. Chen, M. A. Muriel, and P. W. E. Smith, “Experimental demonstration of real-time Fourier transformation using linearly chirped fibre Bragg gratings,” Electron. Lett. 35, 2223-2224 (1999). [CrossRef]
  13. J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encryption-decryption via lateral shifting of a random phase mask,” Opt. Commun. 259, 532-536 (2006). [CrossRef]
  14. J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data using polarization architectures,” Opt. Commun. 260, 109-112 (2006). [CrossRef]
  15. J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiple image encryption using an aperture-modulated optical system,” Opt. Commun. 261, 29-33 (2006). [CrossRef]
  16. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  17. N. K. Berger, B. Levit, S. Atkins, and B. Fischer, “Time-lens-based spectral analysis of optical pulses by electro optic phase modulation,” Electron. Lett. 36, 1644-1646 (2000). [CrossRef]
  18. A. W. Lohmann and D. Mendlovic, “Temporal filtering with time lenses,” Appl. Opt. 31, 6212-6219 (1992).
  19. A. E. Willner and Y. Xie, “Wavelength domain multiplexed (WDM) fiber optic communication networks,” in Fiber Optics Handbook, M. Bass and E. W. Van Stryland, eds. (McGraw-Hill, 2002), pp. 13.1-13.31.
  20. B. M. Hennelly, T. J. Naughton, J. McDonald, J. T. Sheridan, G. Unnikrishnan, D. P. Kelly, and B. Javidi, “Spread-space spread-spectrum technique for secure multiplexing,” Opt. Lett. 32, 1060-1062 (2007). [CrossRef]
  21. L. G. Neto and Y. Sheng, “Optical implementation of image encryption using random phase encoding,” Opt. Eng. 35, 2459-2463 (1996).
  22. C. Cuadrado-Laborde, P. Costanzo-Caso, R. Duchowicz, and E. E. Sicre, “Ultrafast optical temporal processing using phase-space signal representations,” in Optics Research Trends, P. V. Gallico, ed. (Nova Science, 2007).
  23. C. Cuadrado-Laborde, “Time-variant signal encryption by lensless dual random phase encoding applied to fiber optic links,” Opt. Lett. 32, 2867-2869 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited