OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 12 — Apr. 20, 2008
  • pp: 1956–1962

Mid-infrared spectroscopic investigation of methylamines by a continuous-wave difference-frequency-generation-based system

Dilyan Marinov, Julien Rey, and Markus W. Sigrist  »View Author Affiliations

Applied Optics, Vol. 47, Issue 12, pp. 1956-1962 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (3013 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A laser spectroscopic system based on a cw difference-frequency generation source with a ratiometric multipass absorption detection scheme was employed for high-resolution spectroscopic investigation of gas-phase monomethylamine (MMA), dimethylamine (DMA), and trimethylamine (TMA). Possible application of the system as a noninvasive human breath analyzer for renal and liver diseases is targeted. The system operates in the fundamental C H stretch absorption region around 2740 2860 cm 1 . A detection sensitivity of 2 × 10 6 cm 1 Hz 1 / 2 (for signal-to-noise ratio SNR = 1 ) is achieved, corresponding to detection limits of 900 ppb (parts in 10 9 ) for MMA, 450 ppb for DMA, and 120 ppb for TMA in mixtures containing H 2 O and CO 2 with concentrations of up to those present in human breath (2% and 5%, respectively). Future developments are discussed to further improve these detection limits that are currently still about 2 orders of magnitude higher than required for direct methylamine monitoring in human breath.

© 2008 Optical Society of America

OCIS Codes
(140.3600) Lasers and laser optics : Lasers, tunable
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(300.6360) Spectroscopy : Spectroscopy, laser

ToC Category:

Original Manuscript: January 15, 2008
Revised Manuscript: March 20, 2008
Manuscript Accepted: March 21, 2008
Published: April 11, 2008

Virtual Issues
Vol. 3, Iss. 5 Virtual Journal for Biomedical Optics

Dilyan Marinov, Julien Rey, and Markus W. Sigrist, "Mid-infrared spectroscopic investigation of methylamines by a continuous-wave difference-frequency-generation-based system," Appl. Opt. 47, 1956-1962 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. S. M. Studer, J. B. Orens, I. Rosas, J. A. Krishnan, K. A. Cope, S. Yang, J. V. Conte, P. B. Becker, and T. H. Risby, “Patterns and significance of exhaled-breath biomarkers in lung transplant recipients with acute allograft rejection,” J. Heart Lung Transplant 20, 1158-1166 (2001). [CrossRef] [PubMed]
  2. S. S. Sehnert, L. Jiang, J. F. Burdick, and T. H. Risby, “Breath biomarkers for detection of human liver diseases: preliminary study,” Biomarkers 7, 174-187 (2002). [CrossRef] [PubMed]
  3. A. Amann, G. Poupart, S. Telser, M. Ledochowski, A. Schmid, and S. Mechtcheriakov, “Applications of breath gas analysis in medicine,” Int. J. Mass Spectrom. 239, 227-233 (2004). [CrossRef]
  4. T. H. Risby and S. F. Solga, “Current status of clinical breath analysis,” Appl. Phys. B 85, 421-426 (2006). [CrossRef]
  5. S. A. Kharitonov and P. J. Barnes, “Exhaled markers of pulmonary disease,” Am. J. Respir. Crit. Care Med. 163, 1693-1722 (2001). [PubMed]
  6. D. Smith, A. M. Diskin, Y. F. Ji, and P. Spanel, “Concurrent use of H3O+, NO+, and O2+ precursor ions for the detection and quantification of diverse trace gases in the presence of air and breath by selected ion-flow tube mass spectrometry,” Int. J. Mass Spectrom. 209, 81-97 (2001). [CrossRef]
  7. W. Lindinger, A. Hansel, and A. Jordan, “On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS): medical applications, food control, and environmental research,” Int. J. Mass. Spectrom. Ion Processes 173, 191-241 (1998). [CrossRef]
  8. F. J. M. Harren, R. Berkelmans, K. Kuiper, S. te Lintel Hekkert, P. Scheepers, R. Dekhuijzen, P. Hollander, and D. H. Parker, “On-line laser photoacoustic detection of ethene in exhaled air as biomarker of ultraviolet radiation damage of the human skin,” Appl. Phys. Lett. 74, 1761-1763 (1999). [CrossRef]
  9. L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. G. Machl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 859-863 (2001).
  10. C. Roller, K. Namjou, J. D. Jeffers, M. Camp, A. Mock, P. J. McCann, and J. Grego, “Nitric oxide breath testing using tunable diode laser absorption spectroscopy: application in respiratory inflammation monitoring,” Appl. Opt. 41, 6018-6029 (2002). [CrossRef] [PubMed]
  11. G. Wysocki, M. McCurdy, S. So, D. Weidmann, C. Roller, and F. K. Tittel, “Pulsed quantum-cascade laser-based sensor for trace-gas detection of carbonyl sulfide,” Appl. Opt. 43, 6040-6046 (2004). [CrossRef] [PubMed]
  12. D. Halmer, S. Thelen, P. Hering, and M. Mürtz, “Online monitoring of ethane traces in exhaled breath with a difference frequency generation spectrometer,” Appl. Phys. B 85, 437-443 (2006). [CrossRef]
  13. J. Manne, O. Suchkorukov, W. Jäger, and J. Tulip, “Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath,” Appl. Opt. 45, 9230-9237 (2006). [CrossRef] [PubMed]
  14. D. Marinov, J. M. Rey, M. G. Müller, and M. W. Sigrist, “Spectroscopic investigation of methylated amines by a cavity-ringdown based spectrometer,” Appl. Opt. 46, 3981-3986 (2007). [CrossRef] [PubMed]
  15. M. L. Simenhoff, J. F. Burke, J. J. Saukkonen, A. T. Ordinario, and R. Doty, “Biochemical profile of uremic breath,” N. Engl. J. Med. 297, 132-135, (1977). [CrossRef] [PubMed]
  16. S. C. Mitchell and A. Q. Zhang, “Methylamine in human urine,” Clin. Chim. Acta 312, 107-114 (2001). [CrossRef] [PubMed]
  17. A. Q. Zhang, S. C. Mitchell, T. Barrett, R. Ayesh, and R. L. Smith, “Fate of dymethylmine in man,” Xenobiotica 24 (4), 379-387 (1994). [CrossRef] [PubMed]
  18. D. Hernandez, S. Addou, D. Lee, C. Orengo, E. A. Shephard, and I. R. Phillips, “Trimethylaminuria and a human FMO3 mutation database,” Hum. Mutat. 22, 209-213 (2003). [CrossRef] [PubMed]
  19. M. A. Bain, G. Fornasini, and A. M. Evans, “Trimethylamine: metabolic pharmacokinetic and safety aspects,” Curr. Drug Metab. 6, 227-240 (2005). [CrossRef] [PubMed]
  20. M. L. Simenhoff, J. J. Saukkonen, J. F. Burke, L. G. Wessen Jr., R. W. Schaedler, and S. J. Gordon, “Bacterial populations of the small intestine in uremia,” Nephron 22, 63-68 (1978). [CrossRef] [PubMed]
  21. M. A. Bain, R. Faull, G. Fornasini, R. W. Milne, and A. M. Evans, “Accumulation of trimethylamine and trimethylamine-N-oxide in end-stage renal disease patients undergoing haemodialysis,” Nephrol. Dial. Transplant. 21, 1300-1304 (2006). [CrossRef] [PubMed]
  22. H. U. Rehman, “Fish odour syndrome,” Postgrad. Med. J. 75, 451-452 (1999).
  23. S. Mitchell, R. Ayesh, T. Barrett, and R. Smith, “Trimethylamine and foetor hepaticus,” Scand. J. Gastroenterol. 34, 524-528 (1999). [CrossRef] [PubMed]
  24. S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson, “Gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc. 58, 1452-1461 (2004). [CrossRef] [PubMed]
  25. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005). [CrossRef]
  26. O. Tadanaga, Ynishida, T. Yanagawa, H. Miyazawa, K. Magari, T. Umeki, K. Yoshino, M. Asobe, and H. Suzuki, “Diode-laser based 3 mW DFG at 3.4 μm from wavelength conversion module using direct-bonded QPM-LN ridge waveguide,” Electron. Lett. 42, 988-989 (2006). [CrossRef]
  27. R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006). [CrossRef]
  28. A. K. Y. Ngai, S. T. Persijn, G. von Basum, and F. J. M. Harren, “Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection,” Appl. Phys. B 85, 173-180 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited