OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 12 — Apr. 20, 2008
  • pp: 2011–2016

Diffuse optical tomography guided quantitative fluorescence molecular tomography

Yiyong Tan and Huabei Jiang  »View Author Affiliations

Applied Optics, Vol. 47, Issue 12, pp. 2011-2016 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (5278 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a method that combines fluorescence molecular tomography (FMT) with diffuse optical tomography (DOT), which allows us to study the impact of heterogeneous optical property distribution on FMT, an issue that has not been systemically studied. Both numerical simulations and phantom experiments were performed based on our finite-element reconstruction algorithms. The experiments were conducted using a noncontact optical fiber free, multiangle transmission system. In both the simulations and experiments, a fluorescent target was embedded in an optically heterogeneous background medium. The simulation results clearly suggest the necessity of considering the absorption coefficient ( μ a ) and reduced scattering coefficient ( μ s ) distributions for quantitatively accurate FMT, especially in terms of the accuracy of reconstructed fluorophore absorption coefficient ( μ a x m ). Subsequent phantom experiments with an indocyanine green (ICG)-containing target confirm the simulation findings. In addition, we performed a series of phantom experiments with low ICG concentration (0.1, 0.2, 0.4, 0.6 and 1.0 μM ) in the target to systematically evaluate the quantitative accuracy of our FMT approach. The results indicate that, with the knowledge of optical property distribution, the accuracy of the recovered fluorophore concentration is improved significantly over that without such a priori information. In particular absolute value of μ a x m from our DOT guided FMT are quantitatively consistent with that obtained using spectroscopic methods.

© 2008 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

ToC Category:
Imaging Systems

Original Manuscript: August 22, 2007
Revised Manuscript: February 22, 2008
Manuscript Accepted: March 14, 2008
Published: April 11, 2008

Virtual Issues
Vol. 3, Iss. 5 Virtual Journal for Biomedical Optics

Yiyong Tan and Huabei Jiang, "Diffuse optical tomography guided quantitative fluorescence molecular tomography," Appl. Opt. 47, 2011-2016 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87-94(1999).
  2. V. Ntziachristos, T. Jacks, R. Weissleder, J. Grimm, D. G. Kirsch, S. D. Windsor, C. F. Bender Kim, and P. M. Santiago, “Use of gene expression profiling to direct in vivo molecular imaging of lung cancer,” Proc. Natl. Acad. Sci. U.S.A. 102, 14404-14409 (2005).
  3. A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, and C. Grotzinger, “Receptor targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19, 327-331 (2001). [CrossRef]
  4. X. Montet, J. Figueiredo, H. Alencar, V. Ntziachristos, U. Mahmood, and R. Weissleder, “Tomographic fluorescence imaging of tumor vascular volume in mice,” Radiology 242, 751-758 (2007). [CrossRef]
  5. H. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations,” Appl. Opt. 37, 5337-5343 (1998).
  6. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696-6716 (2007). [CrossRef]
  7. M. S. Patterson and B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963-1974 (1994).
  8. E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, and C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency domain techniques,” Photochem. Photobiol. 66, 55-64 (1997). [CrossRef]
  9. V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470-478 (2001).
  10. V. Ntziachristos and R. Weissleder, “Experimental three dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893-895(2001). [CrossRef]
  11. R. Roy, A. Godavarty, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical tomography using referenced measurements of heterogeneous media,” IEEE. T. Med. Imaging. 22, 824-836 (2003).
  12. A. K. Sahu, R. Roy, A. Joshi, and E. M. Sevick-Muraca, “Evaluation of anatomical structure and non-uniform distribution of imaging agent in near-infrared, fluorescence-enhanced optical tomography,” Opt. Express 13, 10182-10199 (2005). [CrossRef]
  13. J. P. Rolland and H. H. Barrett, “Effect of random background inhomogeneity on observer detection performance,” J. Opt. Soc. Am. A 9, 649-658 (1992).
  14. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081-3094 (2003). [CrossRef]
  15. M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Sevick-Muraca, “Three-dimensional Bayesian optical image reconstruction with domain decomposition,” IEEE. T. Med. Imaging. 20, 147-163 (2001).
  16. E. Shives, Y. Xu, and H. Jiang, “Fluorescence lifetime tomography of turbid media based on an oxygen-sensitive dye,” Opt. Express 10, 1557-1562 (2002).
  17. C. Wu, H. Barnhill, X. Liang, Q. Wang, and Huabei Jiang, “A new probe using hybrid virus-dye nanoparticles for near-infrared fluorescence tomography,” Opt. Commun. 255, 366-374 (2005). [CrossRef]
  18. R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, “Tomographic fluorescence imaging in tissue phantoms: a novel reconstruction algorithm and imaging geometry,” IEEE. T. Med. Imaging. 24, 137-154 (2005).
  19. A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE. T. Med. Imaging. 24, 1377-1386 (2005).
  20. L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46, 4896-4906 (2007). [CrossRef]
  21. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Optical image reconstruction using frequency domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253-266 (1996).
  22. R. Philip, A. Penzkofer, W. Biiumler, R. M. Szeimies, and C. Abels, “Absorption and fluorescence spectroscopic investigation of indocyanine green,” Photochem. Photobiol. 96, 137-148(1996). [CrossRef]
  23. B. Yuan, N. Chen, and Q. Zhu, “Emission and absorption properties of indocyanine green in intralipid solution,” J. Biomed. Opt. 9, 497-503 (2004).
  24. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. V. Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510-519(1992). [CrossRef]
  25. H. G. Staveren, C. J. Moes, J. V. Marle, S. A. Prahl, and M. V. Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nanometers,” Appl. Opt. 30, 4507-4514(1991).
  26. E. L. Hully, M. G. Nicholsyz, and Thomas H Fosteryxk, “Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381-3404 (1998). [CrossRef]
  27. M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light- absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575-583(1976).
  28. C. Li and H. Jiang, “A calibration method in diffuse optical tomography,” J. Opt. A: Pure Appl. Opt. 6, 844-852 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited