OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 12 — Apr. 20, 2008
  • pp: 2046–2052

Single frame interferogram evaluation

Eugenio Garbusi, Christof Pruss, and Wolfgang Osten  »View Author Affiliations


Applied Optics, Vol. 47, Issue 12, pp. 2046-2052 (2008)
http://dx.doi.org/10.1364/AO.47.002046


View Full Text Article

Enhanced HTML    Acrobat PDF (5933 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a simple and novel algorithm for the phase extraction from a single interferogram based on the spatial processing of interference patterns. This new evaluation procedure is suitable for application in environments where the presence of vibrations impedes the use of a classical phase-shifting interferometry scheme with multiple exposures. The algorithm does not require the introduction of a linear carrier as required in Fourier transform techniques. The addition of a carrier can be a significant drawback, e.g. in the case of wavefronts with strong aberrations where the minimum required linear carrier is not even resolved by the detector. The basic idea relies on the spatial application of a temporal phase-shifting algorithm and an iterative correction process to obtain an accurate reconstruction of the wavefront. The validity and performance of the proposed method is shown with numerical and experimental results.

© 2008 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: February 13, 2008
Revised Manuscript: March 16, 2008
Manuscript Accepted: March 20, 2008
Published: April 15, 2008

Citation
Eugenio Garbusi, Christof Pruss, and Wolfgang Osten, "Single frame interferogram evaluation," Appl. Opt. 47, 2046-2052 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-12-2046


Sort:  Year  |  Journal  |  Reset  

References

  1. H. J. Okoomian, “A two-beam polarization technique to measure optical phase,” Appl. Opt. 8, 2363-2365 (1969). [CrossRef]
  2. O. Bryngdahl, “Polarization-type interference-fringe shifter.” J. Opt. Soc. Am. 62, 462-464 (1972). [CrossRef]
  3. C. Koliopoulus, “Interferometric optical phase measurement techniques,” Ph.D. dissertation (University of Arizona, 1981).
  4. J. Bruning, J. Gallagher, D. Rosenfeld, D. White, D. Brangaccio, and D. Herriot, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693-2703 (1974). [CrossRef] [PubMed]
  5. H. Schreiber and J. Schwider, “Lateral shearing interferometer based on two Ronchi phase gratings in series,” Appl. Opt. 36, 5321-5324 (1997). [CrossRef] [PubMed]
  6. O. Y. Kwon, “Multichannel phase-shifted interferometer,” Opt. Lett. 9, 59-61 (1984). [CrossRef] [PubMed]
  7. R. Smythe and R. Moore, “Instantaneous phase measuring interferometry,” Opt. Eng. 2, 361-365 (1984).
  8. A. L. Weijers, H. van Brug, and H. J. Frankena, “Polarization phase stepping with a savart element,” Appl. Opt. 37, 5150-5155 (1998). [CrossRef]
  9. J. E. Millerd and N. J. Brock, “Methods and apparatus for splitting, imaging, and measuring wavefronts in interferometry,” U. S. Patent 6,304,330 (16 October 2001).
  10. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156-160 (1982). [CrossRef]
  11. D. W. Robinson, “Spatial phase measurement methods,” in Interferogram Analysis, D.Robinson and G.T.Reid, eds. (Institute of Physics, University of Reading, 1993), pp. 141-193.
  12. M. Pirga and M. Kujawinska, “Two directional spatial carrier phase shifting method for analysis of crossed and closed fringe patterns,” Opt. Eng. 34, 2459-2466 (1995). [CrossRef]
  13. R. Jozwicki, M. Kujawinska, and L. Salbut, “New contra old wavefront measurement concepts for interferometric optical testing,” Opt. Eng. 31, 422-433 (1992). [CrossRef]
  14. J. Garcia-Marquez, D. Malacara-Hernandez, and M. Servin, “Analysis of interferograms with a spatial radial carrier or closed fringes and its holographic analogy,” Appl. Opt. 37, 7977-7982 (1998). [CrossRef]
  15. D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical Testing, 1st ed. (Marcel Dekker, 1998), Chap. 8.
  16. T. Kreis, “Digital holographic interference phase measurement using the Fourier transform method,” J. Opt. Soc. Am. A 3, 847-2466 (1986). [CrossRef]
  17. A. J. Moore and F. Mendoza-Santoyo, “Phase demodulation in the space domain without a fringe carrier,” Opt. Lasers Eng. 23, 319-330 (1995). [CrossRef]
  18. K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform,” J. Opt. Soc. Am. A 18, 1862-1870 (2001). [CrossRef]
  19. K. G. Larkin, “Natural demodulation of two-dimensional fringe patterns. II. Stationary phase analysis of the spiral phase quadrature transform,” J. Opt. Soc. Am. A 18, 1871-1881 (2001). [CrossRef]
  20. E. Robin and V. Valle, “Phase demodulation from a single fringe pattern based on a correlation technique,” Appl. Opt. 43, 4355-4361 (2004). [CrossRef] [PubMed]
  21. E. Robin, V. Valle, and F. Brémand, “Phase demodulation method from a single fringe patter based on correlation with a polynomial form,” Appl. Opt. 44, 7261-7269 (2005). [CrossRef] [PubMed]
  22. M. Servin, J. L. Marroquin, and J. A. Quiroga, “Regularized quadrature and phase tracking from a single closed-fringe interferogram,” J. Opt. Soc. Am. A 21, 411-419 (2004). [CrossRef]
  23. D. C. Williams, N. S. Nassar, J. E. Banyard, and M. S. Virdee, “Digital phase step interferometry: a simplified approach,” Opt. Laser Technol. 23, 147-150 (1991). [CrossRef]
  24. M. Melozzi, L. Pezzati, and A. Mazzoni, “Vibration insensitive interferometer for on-line measurements,” Appl. Opt. 34, 5595-5601 (1995). [CrossRef] [PubMed]
  25. P. Carré, “Installation et utilisation du comparateur photoelectrique et interferential du Bureau International des Poids et Mésures,” Metrologia 2, 13-23 (1966). [CrossRef]
  26. D. Malacara, “Phase shifting interferometers” in Optical Shop Testing, 2nd ed. (Wiley, 1998), Chap. 14.
  27. X. Colonna de Lega and P. Jacquot, “Deformation measurement with object-induced dynamic phase shifting,” Appl. Opt. 35, 5115-5121 (1996). [CrossRef] [PubMed]
  28. M. Küchel, “Some progress in phase measurement techniques,” Fringe 1997, Proceedings of the International Workshop on Automatic Processing of Fringe Patterns, (Akademie Verlag, 1997), pp. 27-44.
  29. Z. Wang and B. Han, “Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms,” Opt. Lett. 29, 1671-1673 (2004). [CrossRef] [PubMed]
  30. R. Doloca and R. Tutsch, “Random phase shift interferometer,” Fringe 2005, Proceedings of the International Workshop on Automatic Processing of Fringe Patterns (Springer-Verlag, 2005), pp. 166-174.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited