OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 12 — Apr. 20, 2008
  • pp: 2061–2069

Laser Doppler blood flow complementary metal oxide semiconductor imaging sensor with analog on-chip processing

Quan Gu, Barrie R. Hayes-Gill, and Stephen P. Morgan  »View Author Affiliations


Applied Optics, Vol. 47, Issue 12, pp. 2061-2069 (2008)
http://dx.doi.org/10.1364/AO.47.002061


View Full Text Article

Enhanced HTML    Acrobat PDF (9129 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A 4 × 4 pixel array with analog on-chip processing has been fabricated within a 0.35 μm complementary metal oxide semiconductor process as a prototype sensor for laser Doppler blood flow imaging. At each pixel the bandpass and frequency weighted filters necessary for processing laser Doppler blood flow signals have been designed and fabricated. Because of the space constraints of implementing an accurate ω 0.5 filter at the pixel level, this has been approximated using the “roll off” of a high-pass filter with a cutoff frequency set at 10 kHz . The sensor has been characterized using a modulated laser source. Fixed pattern noise is present that is demonstrated to be repeatable across the array and can be calibrated. Preliminary blood flow results on a finger before and after occlusion demonstrate that the sensor array provides the potential for a system that can be scaled to a larger number of pixels for blood flow imaging.

© 2008 Optical Society of America

OCIS Codes
(040.0040) Detectors : Detectors
(110.0110) Imaging systems : Imaging systems
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: December 3, 2007
Manuscript Accepted: February 10, 2008
Published: April 16, 2008

Virtual Issues
Vol. 3, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Quan Gu, Barrie R. Hayes-Gill, and Stephen P. Morgan, "Laser Doppler blood flow complementary metal oxide semiconductor imaging sensor with analog on-chip processing," Appl. Opt. 47, 2061-2069 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-12-2061


Sort:  Year  |  Journal  |  Reset  

References

  1. M. Stern, “In vivo evaluation of microcirculation by coherent light scattering,” Nature 254, 56-58 (1975). [CrossRef]
  2. G. Belcaro, U. Hoffman, A. Bollinger, and A. Nicolaides, Laser Doppler (Prentice Hall, 1994).
  3. W. R. Schiller, R. L. Garren, R. C. Bay, M. H. Ruddell, G. A. Holloway, A. Mohty, and C. A. Luekens, “Laser Doppler evaluation of burned hands predicts need for surgical grafting,” J. Trauma: Inj., Infect., Crit. Care 43, 35-39 (1997). [CrossRef]
  4. P. N. Blondeel, G. Beyens, R. Verhaeghe, K. Van Landuyt, P. Tonnard, S. J. Monstrey, and G Matton, “Doppler flowmetry in the planning of perforator flaps,” Br. J. Plastic Surg. 51, 202-209 (1998). [CrossRef]
  5. E. L. Speight, T. J. H. Essex, and P. M. Farr, “The study of plaques of psoriasis using a scanning laser-Doppler velocimeter,” Br. J. Dermatol. 128, 519-524 (1993). [CrossRef]
  6. T. J. H. Essex and P. O. Byrne, “A laser Doppler scanner for imaging blood flow in skin,” J. Biomed. Eng. 13, 189-194(1991). [CrossRef]
  7. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22, R35-R66 (2001). [CrossRef]
  8. A. Serov, B. Steinacher, and T. Lasser, “Full-field laser Doppler perfusion imaging and monitoring with an intelligent CMOS camera,” Opt. Express 13, 3681-3689 (2005). [CrossRef]
  9. A. Serov and T. Lasser, “High-speed laser Doppler perfusion imaging using an integrating CMOS image sensor,” Opt. Express 13, 6416-6428 (2005). [CrossRef]
  10. B. H. Pui, B. Hayes-Gill, M. Clark, M. G. Somekh, C. W. See, S. Morgan, and A. Ng, “Integration of a photodiode array and centroid processing on a single CMOS chip for a real-time Shack-Hartmann wavefront sensor,” IEEE Sens. J. 4, 787-794 (2004).
  11. B. H. Pui, B. R. Hayes-Gill, M. Clark, M. Somekh, C. W. See, S. Morgan, and A. Ng, “The design of a real time VLSI optical centroid processor,” in Proceedings of IEEE Sensors 2002 (IEEE, 2002) Vol. 1, pp. 5-10, doi: 10.1109/ICSENS.2002-1036974.
  12. C. Kongsavatsak, “Full field laser Doppler blood flow camera,” Ph.D. dissertation (University of Nottingham, U.K., 2005).
  13. B. H. Pui, B. R. Hayes-Gill, M. Clark, M. G. Somekh, C. W. See, S. P. Morgan, and A. Ng, “The design and characterisation of an optical VLSI processor for real time centroid detection,” Analog Integr. Circuits Signal Process. 32, 67-75(2002).
  14. A. Moini, Vision Chips (Kluwer Academic, 2000).
  15. P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design (Oxford University Press, 1987).
  16. S. M Park and H. J. Yoo, “2.5 Gbit/s CMOS transimpedance amplifier for optical communication applications,” Electron. Lett. 39, 211-212 (2003). [CrossRef]
  17. P. R. Dmochowski, B. R. Hayes-Gill, M. Clark, J. A. Crowe, M. G. Somekh, and S. P. Morgan, “Camera pixel for coherent detection of modulated light,” Electron. Lett. 40, 1403-1404(2004). [CrossRef]
  18. F. Irons, Active Filters (Artech House, 2005).
  19. R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI Design Techniques for Analog and Digital Circuits (McGraw-Hill, 1990).
  20. B. Razavi, Design of Analog CMOS Integrated Circuits (McGraw-Hill, 2001).
  21. R. L. Geiger and E. Sánchez-Sinencio, “Active filter design using operational transconductance amplifiers: a tutorial,” IEEE Circuits Devices Mag. 1, 20-32 (1985).
  22. J. Silva-Martinez and S. Solis-Bustos, “Design consideration for high performance very-low frequency filters,” in IEEE International Symposium on Circuits and Systems (1999), pp. 648-651.
  23. C. Mead, Analog VLSI and Neural Systems (Addison-Wesley, 1989).
  24. S. O. Otim, D. Joseph, B. Choubey, and S. Collins, “Modelling of high dynamic range logarithmic CMOS image sensors,” in Instrumentation and Measurement Technology Conference (2004), p. 451.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited