OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 12 — Apr. 20, 2008
  • pp: 2091–2097

Shape reconstruction from gradient data

Svenja Ettl, Jürgen Kaminski, Markus C. Knauer, and Gerd Häusler  »View Author Affiliations

Applied Optics, Vol. 47, Issue 12, pp. 2091-2097 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (3744 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a generalized method for reconstructing the shape of an object from measured gradient data. A certain class of optical sensors does not measure the shape of an object but rather its local slope. These sensors display several advantages, including high information efficiency, sensitivity, and robustness. For many applications, however, it is necessary to acquire the shape, which must be calculated from the slopes by numerical integration. Existing integration techniques show drawbacks that render them unusable in many cases. Our method is based on an approximation employing radial basis functions. It can be applied to irregularly sampled, noisy, and incomplete data, and it reconstructs surfaces both locally and globally with high accuracy.

© 2008 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure
(150.6910) Machine vision : Three-dimensional sensing

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: October 24, 2007
Revised Manuscript: January 30, 2008
Manuscript Accepted: February 4, 2008
Published: April 16, 2008

Svenja Ettl, Jürgen Kaminski, Markus C. Knauer, and Gerd Häusler, "Shape reconstruction from gradient data," Appl. Opt. 47, 2091-2097 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. B.Girod, G.Greiner, and H.Niemann, eds., Principles of 3D Image Analysis and Synthesis (Kluwer, 2000).
  2. C. Wagner and G. Häusler, “Information theoretical optimization for optical range sensors,” Appl. Opt. 42, 5418-5426(2003). [CrossRef] [PubMed]
  3. B.Horn and M.Brooks, eds., Shape from Shading (MIT, 1989).
  4. I. Weingärtner and M. Schulz, “Novel scanning technique for ultraprecise measurement of slope and topography of flats, aspheres, and complex surfaces,” in Optical Fabrication and Testing, Proc. SPIE 3739, 274-282 (1999). [CrossRef]
  5. G. Häusler and G. Schneider, “Testing optics by experimental ray tracing with a lateral effect photodiode,” Appl. Opt. 27, 5160-5164 (1988). [CrossRef] [PubMed]
  6. G. Häusler, “Verfahren und Vorrichtung zur Ermittlung der Form oder der Abbildungseigenschaften von spiegelnden oder transparenten Objekten,” DE Patent 19944354 (16 September 1999).
  7. M. C. Knauer, J. Kaminski, and G. Häusler, “Phase measuring deflectometry: a new approach to measure specular free-form surfaces,” in Optical Metrology in Production Engineering, Proc. SPIE 5457, 366-376 (2004). [CrossRef]
  8. J. Kaminski, S. Lowitzsch, M. C. Knauer, and G. Häusler, “Full-field shape measurement of specular surfaces,” in Fringe 2005, The 5th International Workshop on Automatic Processing of Fringe Patterns, W. Osten, ed. (Springer, 2005), pp. 372-379.
  9. S. Lowitzsch, J. Kaminski, M. C. Knauer, and G. Häusler, “Vision and modeling of specular surfaces,” in Vision, Modeling, and Visualization 2005, G. Greiner, J. Hornegger, H. Niemann, and M. Stamminger, eds. (Akademische Verlagsgesellschaft Aka GmbH, 2005), pp. 479-486.
  10. G. Häusler, C. Richter, K.-H. Leitz, and M. C. Knauer, “Microdeflectometry--a novel tool to acquire 3D microtopology with nanometer height resolution,” Opt. Lett. 33, 396-398 (2008).
  11. J. Pfund, N. Lindlein, J. Schwider, R. Burow, T. Blumel, and K. E. Elssner, “Absolute sphericity measurement: a comparative study of the use of interferometry and a Shack-Hartmann sensor,” Opt. Lett. 23, 742-744 (1998). [CrossRef]
  12. A. Agrawal, R. Chellappa, and R. Raskar, “An algebraic approach to surface reconstruction from gradient fields,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV), (IEEE, 2005), Vol. 1, pp. 174-181.
  13. R. T. Frankot and R. Chellappa, “A method for enforcing integrability in shape from shading algorithms,” IEEE Trans. Pattern Anal. Mach. Intell. 10, 439-451 (1988). [CrossRef]
  14. I. Horovitz and N. Kiryati, “Depth from gradient fields and control points: bias correction in photometric stereo,” Image Vis. Comput. 22, 681-694 (2004). [CrossRef]
  15. L. P. Yaroslavsky, A. Moreno, and J. Campos, “Frequency responses and resolving power of numerical integration of sampled data,” Opt. Express 13, 2892-2905 (2005). [CrossRef] [PubMed]
  16. C. Elster and I. Weingärtner, “High-accuracy reconstruction of a function f(x) when only df(x)/dx or d2f(x)/dx2 is known at discrete measurement points,” in X-Ray Mirrors, Crystals, and Multilayers II, Proc. SPIE 4782 (2002), 12-20. [CrossRef]
  17. K. Schlüns and R. Klette, “Local and global integration of discrete vector fields,” in ,i>Advances in Computer Vision (Springer, 1996), pp. 149-158.
  18. W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. 70, 998-1006 (1980). [CrossRef]
  19. J. Villa, G. García, and G. Gómez, “Wavefront recovery in shearing interferometry with variable magnitude and direction shear,” Opt. Commun. 195, 85-91 (2001). [CrossRef]
  20. R. Legarda-Sáenz, M. Rivera, R. Rodríguez-Vera, and G. Trujillo-Schiaffino, “Robust wave-front estimation from multiple directional derivatives,” Opt. Lett. 25, 1089-1091 (2000). [CrossRef]
  21. S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, “Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers,” Opt. Lett. 30, 245-247 (2005). [CrossRef] [PubMed]
  22. F. J. Narcowich, J. D. Ward, and H. Wendland, “Refined error estimates for radial basis function interpolation,” Constructive Approx. 19, 541-564 (2003). [CrossRef]
  23. M. D. Buhmann, Radial Basis Functions (Cambridge U. Press, 2003). [CrossRef]
  24. S. Ettl, J. Kaminski, and G. Häusler, “Generalized hermite interpolation with radial basis functions considering only gradient data,” in Curve and Surface Fitting: Avignon 2006, A. Cohen, J. -L. Merrien, and L. L. Schumaker, eds. (Nashboro Press, 2007), pp. 141-149.
  25. N. Dyn, F. Narcowich, and J. Ward, “Variational principles and Sobolev-type estimates for generalized interpolation on a Riemannian manifold,” Constructive Approx. 15, 175-208 (1999). [CrossRef]
  26. H. Wendland, “Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degree,” Adv. Comput. Math. 4, 389-396 (1995). [CrossRef]
  27. M. C. Knauer, T. Bothe, S. Lowitzsch, W. Jüptner, and G. Häusler, Höhe, Neigung oder Krümmung? in Proceedings of the 107th Annual DGaO Conference (Deutsche Gesellschaft für angewandte Optik, 2006), p. B30.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited