OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 12 — Apr. 20, 2008
  • pp: 2116–2132

Wide-range sounding of free-tropospheric water vapor with a differential-absorption lidar (DIAL) at a high-altitude station

Hannes Vogelmann and Thomas Trickl  »View Author Affiliations


Applied Optics, Vol. 47, Issue 12, pp. 2116-2132 (2008)
http://dx.doi.org/10.1364/AO.47.002116


View Full Text Article

Enhanced HTML    Acrobat PDF (3660 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A differential absorption lidar (DIAL) system has been developed for the measurement of water vapor throughout the free troposphere [3 to 12km above sea level (asl.)] with high vertical resolution varied from 50m next to the ground to 300m above an altitude of 10km . The system was installed at the Schneefernerhaus high-altitude research station ( 2675m asl., Zugspitze, Germany). The DIAL system is based on a tunable single-mode laser system with a high pulse energy of currently 250mJ and a repetition rate of 20s1 . For lidar operation with energies typically between 100mJ and 150mJ and an integration time of 1000s (10000 laser shots for both DIAL wavelengths) a vertical range of at least 10km has been demonstrated even under dry conditions and during daytime, while daytime measurements up to 12km have been possible under humid conditions. The system was intercompared with radiosondes, which suggests an agreement within 5% in a major part of the operating range. Further improvements are planned in the upper troposphere to approach the accuracy requirements needed in climate research.

© 2008 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(140.3590) Lasers and laser optics : Lasers, titanium
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: January 7, 2008
Revised Manuscript: February 28, 2008
Manuscript Accepted: March 3, 2008
Published: April 17, 2008

Citation
Hannes Vogelmann and Thomas Trickl, "Wide-range sounding of free-tropospheric water vapor with a differential-absorption lidar (DIAL) at a high-altitude station," Appl. Opt. 47, 2116-2132 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-12-2116


Sort:  Year  |  Journal  |  Reset  

References

  1. R. S. Lindzen, “Some coolness concerning global warming,” Bull. Am. Meteorol. Soc. 71, 288-298 (1990). [CrossRef]
  2. J. E. Hansen and A. A. Lacis, “Sun and water in the greenhouse,” Nature 349, 467 (1991). [CrossRef]
  3. R. S. Lindzen, “Sun and water in the greenhouse,” Nature 349, 467 (1991). [CrossRef]
  4. J. E. Harries, “The greenhouse Earth: a view from space,” Q. J. R. Meteorol. Soc. 122, 799-818 (1996).
  5. D.-Z. Sun and I. M. Held, “A Comparison of modeled and observed relationships between interannual variations of water vapor and temperature,” J. Clim. 9, 665-675 (1996). [CrossRef]
  6. J. E. Harries, “Atmospheric radiation and atmospheric humidity,” Q. J. R. Meteorol. Soc. 123, 2173-2186 (1997). [CrossRef]
  7. R. W. Spencer and W. D. Braswell, “How dry is the tropical free troposphere? Implications for global warming theory,” Bull. Am. Meteorol. Soc. 78, 1097-1106 (1997). [CrossRef]
  8. A. K. Inamdar and V. Ramanathan, “Tropical and global scale interactions among water vapor atmospheric greenhouse effect and surface temperature,” J. Geophys. Res. 103, 32,177-32,194 (1998). [CrossRef]
  9. E. K. Schneider, B. P. Kirtman, and R. S. Lindzen, “Tropospheric water vapor and climate sensitivity,” J. Atmos. Sci. 56, 1649-1658 (1999). [CrossRef]
  10. A. Hall and S. Manabe, “The role of water vapor feedback in unperturbed climate variability and global warming,” J. Clim. 12, 2327-2346 (1999). [CrossRef]
  11. A. Hall and S. Manabe, “Effect of water vapor on internal and anthropogenic variations of the global hydrologic cycle,” J. Geophys. Res. 105, 6935-6944 (2000). [CrossRef]
  12. I. M. Held and B. J. Soden, “Water vapor feedback and global warming,” Ann. Rev. Energy Environ. 25, 441-475 (2000).
  13. J. J. Bates, “Variability of tropical upper tropospheric humidity 1979-1998,” J. Geophys. Res. 106, 32,271-32,281 (2001). [CrossRef]
  14. E. A. Ray and K. H. Rosenlof, “Hydration of the upper troposphere by tropical cyclones,” J. Geophys. Res. 112, D12311(2007). [CrossRef]
  15. P. J. Crutzen, M. G. Lawrence, and U. Pöschl, “On the background photochemistry of tropospheric ozone,” Tellus Ser. A 51, 123-146 (1999). [CrossRef]
  16. R. E. Newell, V. Thouret, J. Y. N. Cho, P. Stoller, A. Marenco, and H. G. Smit, “Ubiquity of quasi-horizontal layers in the troposphere,” Nature 398, 316-319 (1999). [CrossRef]
  17. T. Trickl, O. R. Cooper, H. Eisele, P. James, R. Mücke, and A. Stohl, “Intercontinental transport and its influence on the ozone concentrations over central Europe: three case studies,” J. Geophys. Res. 108, 8530 (2003). [CrossRef]
  18. A. Stohl and O. R. Cooper, “A cautionary note on the use of meteorological analysis fields for quantifying atmospheric mixing,” J. Atmos. Sci. 61, 1446-1453 (2004). [CrossRef]
  19. Global Atmosphere Watch, “Report of the third session of the EC panel of experts/cas working group on environmental pollution and atmospheric chemistry,” (World Meteorological Organization, 1993), pp. 25.
  20. A. D. Del Genio, A. A. Lacis, and R. A. Ruedy, “Simulations of the effect of a warmer climate on atmospheric humidity,” Nature 351, 382-385 (1991). [CrossRef]
  21. K. P. Shine and A. Sinha, “Sensitivity of the Earth's climate to the height-dependent changes in the water vapour mixing ratio,” Nature 354, 382-384 (1991). [CrossRef]
  22. “SPARC assessment of the upper tropospheric and stratospheric water vapour,” Report, WMO/TD No. 1043 (World Meteorological Organization, 2000), pp. 312.
  23. W. P. Elliott and D. J. Gaffen, “On the utility of radiosonde humidity archives for climate studies,” Bull. Am. Meteorol. Soc. 72, 1507-1520 (1991). [CrossRef]
  24. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidllin, and D. O. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Ocean. Technol. 12 (1995). [CrossRef]
  25. S. Pang, H. Graßl, and H. Jäger, “An improved humidity sensor,” J. Atmos. Ocean. Technol. 13, 1110-1115 (1996). [CrossRef]
  26. B. J. Soden, D. D. Turner, B. M. Lesht, and L. M. Miloshevich, “An analysis of satellite, radiosonde, and lidar observations of upper tropospheric water vapor from the Atmospheric Radiation Measurement Program,” J. Geophys. Res. 109, D04105(2004). [CrossRef]
  27. H. Vömel, H. Selkirk, L. Miloshevich, J. Valverde-Canossa, J. Valdés, E. Kyrö, R. Kivi, W. Stolz, G. Peng, and J. A. Diaz, “Radiation dry bias of the Vaisala RS92 humidity sensor,” J. Atmos. Oceanic Technol. 24, 953-963 (2007). [CrossRef]
  28. A. Marenco, V. Thouret, P. Nedelec, H. Smit, M. Helten, D. Kley, F. Karcher, P. Simon, K. Law, J. Pyle, G. Poschmann, R. von Wrede, C. Hume, and T. Cook, “Measurement of ozone and water vapor by Airbus in-service aircraft: The MOZAIC airborne program, an overview,” J. Geophys. Res. 103, 25,631-25,642 (1998). [CrossRef]
  29. F. Solheim and J. R. Godwin, “Passive ground-based remote sensing of atmospheric temperature, water vapor, and cloud liquid water profiles by a frequency synthesized microwave radiometer,” Meteorologische Z. 7, 370-376 (1998).
  30. L. Martin, M. Schneebeli, and C. Mätzler, “Tropospheric water and temperature retrieval for ASMUWARA,” Meteorol. Z. 15, 37-44 (2006). [CrossRef]
  31. D. Cimini, T. J. Hewison, L. Martin, J. Güldner, C. Gaffard, and F. S. Marzano, “Temperature and humidity profile retrievals from ground-based microwave radiometers during TUC,” Meteorol. Z. 15, 45-56 (2006). [CrossRef]
  32. B. Deuber and N. Kämpfer, “An new 22-GHz radiometer for middle atmospheric water vapor profile measurements,” IEEE Trans. Geosci. Remote Sens. 42, 974-984 (2004). [CrossRef]
  33. B. Deuber, A. Haefele, D. G. Feist, L. Martin, N. Kämpfer, G. E. Nedoluha, V. Yushkov, S. Khaykin, R. Kivi, and H. Vömel, “Middle atmospheric water vapour radiometer (MIAWARA): validation and first results of the LAPBIAT upper tropospheric lower stratospheric water vapour validation project (LAUTLOS-WAVVAP) campaign,” J. Geophys. Res. 110, D13306 (2005). [CrossRef]
  34. P. Hartogh and C. Jarchow, “Ground-based detection of middle atmospheric water vapor,” Proc. SPIE 2586, 188-195 (1995).
  35. R. Sussmann and C. Camy-Peyret, “Two years of satellite validation at the permanent ground-truthing facility Zugspitze/Garmisch: implementations for AIRS/IASI validation,” (International Ozone Comission, World Meteorological Organization, 2004), Vol. 1, pp. 616-617.
  36. W. Carnuth, U. Kempfer, and T. Trickl, “Highlights of the tropospheric lidar studies at IFU within the TOR project,” Tellus 54B, 163-185 (2002).
  37. H. Eisele, H. E. Scheel, R. Sládkovič, and T. Trickl, “High-resolution lidar measurements of stratosphere-troposphere exchange,” J. Atmos. Sci. 56, 319-330 (1999). [CrossRef]
  38. A. Stohl and T. Trickl, “A textbook example of long-range transport: simultaneous observation of ozone maxima of stratospheric and North American origin in the free troposphere over Europe,” J. Geophys. Res. 104, 30,445-30,462 (1999). [CrossRef]
  39. C. Forster, U. Wandinger, G. Wotawa, P. James, I. Mattis, D. Althausen, P. Simmonds, S. O'Doherty, S. G. Jennings, C. Kleefeld, J. Schneider, T. Trickl, S. Kreipl, H. Jäger, and A. Stohl, “Transport of boreal forest fire emissions from Canada to Europe,” J. Geophys. Res. 106, 22,887-22,906 (2001). [CrossRef]
  40. P. Zanis, T. Trickl, A. Stohl, H. Wernli, O. Cooper, C. Zerefos, H. Gaeggeler, C. Schnabel, L. Tobler, P. W. Kubik, A. Priller, H. E. Scheel, H. J. Kanter, P. Cristofanelli, C. Forster, P. James, E. Gerasopoulos, A. Delcloo, A. Papayannis, and H. Claude, “Forecast, observation and modelling of a deep stratospheric intrusion event over Europe,” Atmos. Chem. Phys. 3, 763-777(2003).
  41. R. M. Schotland, “Some observations of the vertical profile of water vapor by a laser optical radar,” in Proceedings of the Fourth Symposium on Remote Sensing of the Environment (U. Michigan, 1966), pp. 273-283.
  42. E. R. Murray, R. D. Hake Jr., J. E. van der Laan, and J. G. Hawley, “Atmospheric water vapor measurements with an infrared (10-μm) differential-absorption lidar system,” Appl. Phys. Lett. 28, 542-543 (1976). [CrossRef]
  43. E. V. Browell, T. D. Wilkerson, and T. J. McIlrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 3474-3483 (1979).
  44. E. V. Browell, A. F. Carter, and T. D. Wilkerson, “Airborne differential absorption lidar system for water vapor investigations,” Opt. Eng. 20, 84-90 (1981).
  45. C. Cahen, G. Mégie, and P. Flamant, “Lidar monitoring of the water vapor cycle in the troposphere,” J. Appl. Meteorol. 21, 1506-1515 (1982). [CrossRef]
  46. V. V. Zuev, V. E. Zuev, Y. S. Makushkin, V. N. Marichev, and A. A. Mitsel, “Laser sounding of atmospheric humidity: experiment,” Appl. Opt. 22, 3742-3746 (1983).
  47. W. B. Grant, J. S. Margolis, A. M. Brothers, and D. M. Tratt, “CO2 DIAL measurements of water vapor,” Appl. Opt. 26, 3033-3042 (1987).
  48. J. Bösenberg, “A differential absorption lidar system for high resolution water vapor measurements in the troposphere,” Report 71 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1991), pp. 37.
  49. G. Ehret, C. Kiemle, W. Renger, and G. Simmet, “Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system,” Appl. Opt. 32, 4534-4551 (1993).
  50. N. S. Higdon, E. V. Browell, P. Ponsardin, B. E. Grossman, C. F. Butler, T. H. Chyba, M. N. Mayo, R. J. Allen, A. W. Heuser, W. B. Grant, S. Ismail, S. D. Mayor, and A. F. Carter, “Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols,” Appl. Opt. 33, 6422-6438 (1994).
  51. C. Senff, J. Bösenberg, and G. Peters, “Measurement of water vapor flux profiles in the convective boundary layer with lidar an radar-RASS,” J. Atmos. Ocean. Technol. 11, 85-93 (1994). [CrossRef]
  52. A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, and S. Ismail, “Development of the lidar atmospheric sensing experiment (LASE)--an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, and U. Wandinger, eds. (Springer-Verlag, 1996), pp. 281-288.
  53. V. Wulfmeyer and J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825-3844 (1998).
  54. E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399-410 (1998).
  55. D. Bruneau, P. Quaglia, C. Flament, M. Meissonnier, and J. Pelon, “Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description,” Appl. Opt. 40, 3450-3460 (2001). [CrossRef]
  56. D. Bruneau, P. Quaglia, C. Flamant, and J. Pelon, “Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. II. First results,” Appl. Opt. 40, 3462-3475 (2001). [CrossRef]
  57. L. M. Little and G. C. Papen, “Fiber-based lidar atmospheric water-vapor measurements,” Appl. Opt. 40, 3417-3427 (2001). [CrossRef]
  58. C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, and O. Uchino, “Developement of airborne DIAL for water vapor measurement,” in Lidar Remote Sensing for Industry and Environment Monitoring--Proceedings of SPIE--The International Society for Optical Engineering, U. N. Singh, T. Itabe, and N. Sugimoto, eds. (2001), Vol. 4153, pp. 599-606.
  59. G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, and G. Ehret, “Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy,” Appl. Phys. B 75, 165-172 (2002). [CrossRef]
  60. K. Ertel, “Application and development of water vapor DIAL systems,” Ph.D. Dissertation (in English) (Universität Hamburg, 2004), pp. 128.
  61. J. L. Machol, T. Ayers, K. T. Schwenz, K. W. Koenig, R. M. Hardesty, C. J. Senff, M. A. Krainak, J. B. Abshire, H. E. Bravo, and S. P. Sandberg, “Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor,” Appl. Opt. 43, 3110-3121 (2004). [CrossRef]
  62. H. Flentje, A. Dörnbrack, G. Ehret, A. Fix, C. Kiemle, G. Poberaj, and M. Wirth, “Water vapor heterogeneity related to tropopause folds over the North Atlantic revealed by airborne water vapor differential absorption lidar,” J. Geophys. Res. 110, D03115(2005). [CrossRef]
  63. K. Ertel, H. Linné, and J. Bösenberg, “Injection-seeded pulsed Ti:sapphire laser with novel stabilization scheme and capability of dual-wavelength operation,” Appl. Opt. 44, 5120-5126(2005). [CrossRef]
  64. H. Linné, B. Hennemuth, J. Bösenberg, and K. Ertel, “Water vapour flux profiles in the convective boundary layer,” Theor. Appl. Climatol. 87, 201-211 (2006).
  65. G. Sachse, L. Wang, C. Antill, S. Ismail, and E. V. Browell, “Line-center/side-line diode laser seeding for DIAL measurements of the atmosphere,” in Optical Remote Sensing of the Atmosphere (Optical Society of America, 1995), pp. 289-295.
  66. E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, and D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, and U. Wandinger, eds. (Springer-Verlag, 1996), pp. 289-295.
  67. G. Ehret, K. P. Hoinka, J. Stein, A. Fix, C. Kiemle, and G. Poberaj, “Low stratospheric water vapor measured by an airborne DIAL,” J. Geophys. Res. 104, 31351-31360 (1999). [CrossRef]
  68. E. V. Browell, M. A. Fenn, C. F. Butler, W. B. Grant, S. Ismail, R. A. Ferrare, S. A. Kooi, V. G. Brackett, M. B. Clayton, M. A. Avery, J. D. W. Barrick, H. E. Fuelberg, J. C. Maloney, R. E. Newell, Y. Zhu, M. J. Mahoney, B. E. Anderson, D. R. Blake, W. H. Brune, B. G. Heikes, G. W. Sachse, H. B. Singh, and R. W. Talbot, “Large-scale air mass characteristics observed over the remote tropical Pacific Ocean during March-April 1999: results from PEM-Tropics B field experiment,” J. Geophys. Res. 106, 32,481-32,502 (2001). [CrossRef]
  69. T. Trickl and H. Vogelmann, “Wide-range vertical sounding of free-tropospheric water vapour: The first two years of operation of the Zugspitze differential-absorption lidar,” in Reviewed and Revised Papers Presented at the 23rd International Laser and Radar Conference, Part II, C. Nagasawa and N. Sugimoto, eds. (University of Tokyo, 2006), pp. 687-690.
  70. LOWTRAN 5 model (1989), ONTAR Corporation, 9 Village Way, North Andover, MA 01845-2000 USA.
  71. V. Wulfmeyer and C. Walther, “Future performance of ground-based and airborne water-vapor differential absorption lidar. II. Simulations of the precision of a near-infrared, high-power system,” Appl. Opt. 40, 5321-5336 (2001). [CrossRef]
  72. VDI guide line 4210, Remote sensing, Atmospoheric measurements with LIDAR, Measuring gaseous air pollution with the DAS LIDAR (Verein Deutscher Ingenieure, 1999), pp. 47.
  73. P. L. Ponsardin and E. V. Browell, “Measurements of H216O linestrengths and air-induced broadenings and shifts in the 815 nm spectral region,” J. Mol. Spectrosc. 185, 58-70 (1997). [CrossRef]
  74. H. Jäger, P. James, S. Kreipl, A. Stohl, and T. Trickl, “Long-range transport and its impact on the vertical distribution of trace constituents in the central European free troposphere,” in Reviewed and Revised Papers Presented at the 22nd International Laser Radar Conference, G. Pappalardo, A. Amodeo, and B. Warmbein, eds. (ESA Publications Division, 2004), pp. 679-682.
  75. K. S. E. Eikema, W. Ubachs, W. Vassen, and W. Hogervorst, “Lamb shift measurement in the 1 S1 ground state of helium,” Phys. Rev. A 55, 1866-1884 (1997). [CrossRef]
  76. T. Trickl, A. H. Kung, and Y. T. Lee, “Krypton atom and testing the limits of extreme-ultraviolet tunable-laser spectroscopy,” Phys. Rev. A 75, 022501 (2007). [CrossRef]
  77. H. Vogelmann, “Entwicklung und Aufbau eines Hochleistungs-Wasserdampf-LIDAR-Systems auf der Zugspitze,” Ph.D. Dissertation (in German) (Universität Augsburg, 2006).
  78. W. R. Bosenberg and D. R. Guyer, “Broadly tunable, single-frequency optical parametric freqency-conversion system,” J. Opt. Soc. Am. B 10, 1716-1722 (1993).
  79. K. Grützmacher and A. Steiger (personal communication, 1998).
  80. V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor temperature-profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 3804-3824 (1998).
  81. A. H. Kung, “Regenerative amplification of a single-frequency optical parametric oscillator,” Opt. Lett. 18, 2017-2019 (1993).
  82. A. Hoffstädt, “Design and performance of a high-average-power flashlamp-pumped Ti:Sapphire laser and amplifier,” IEEE J. Quantum Electron. 33, 1850-1863 (1997). [CrossRef]
  83. A. Hoffstädt, “Physikalische und technische Grundlagen von lampengepumpten Hochleitungs-Ti:Saphir-Laser-Oszillatoren und -Verstärkern,” Ph.D. Dissertation (in German) (Technische Universität Berlin, 1995), pp. 197.
  84. J. Bösenberg, “Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology,” Appl. Opt. 37, 3845-3860 (1998).
  85. P. Brenner, O. Reitebuch, K. Schäfer, and T. Trickl, “A novel mobile vertical-sounding system for ozone studies in the lower troposphere,” in Advances in Atmospheric Remote Sensing with Lidar, P. R. A. Ansmann, R. Neuber, and U. Wandinger, eds. (Springer-Verlag, 1996), pp. 383-386 Selected Papers of the 18th International Laser Radar Conference (ILRC), Berlin, 22-26 July 1996.
  86. A. Ansmann and J. Bösenberg, “Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water vapor in the troposphere,” Appl. Opt. 26, 3026-3032(1987).
  87. G. Fiocco and J. B. De Wolf, “Frequency spectrum of laser echoes from atmospheric constituents and determination of the aerosol content of air.” J. Atmos. Sci. 25, 488-496 (1968). [CrossRef]
  88. G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of the temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature 229, 78-79 (1971).
  89. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211-220 (1981).
  90. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638-1643 (1985).
  91. H. Eisele and T. Trickl, “Improvements of the aerosol algorithm in ozone lidar data processing by use of evolutionary strategies,” Appl. Opt. 44, 2638-2651 (2005). [CrossRef]
  92. U. Kempfer, “Entwicklung und Anwendung eines differentiellen Absorptions-LIDAR-Systems zur Messung der troposphärischen Ozonkonzentration,” Ph.D. Dissertation (in German), pp. 151 (Ludwig-Maximilians-Univeristät München, 1992).
  93. U. Kempfer, W. Carnuth, R. Lotz, and T. Trickl, “A wide-range ultraviolet lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145-3164 (1994). [CrossRef]
  94. D. Sonntag and D. Heinze, Sättigungsdampfdruck- und Sättigungsdampfdichtetafeln für Wasser und Eis (in German), 1st ed. (VEB Deutscher Verlag für Grundstoffindustrie, 1982).
  95. G. Pappalardo, “Aerosol lidar ratio measurements in the framework of EARLINET,” Geophys. Abstracts 7, 4 (2005).
  96. H. Jäger, “Long-term record of lidar observations of the stratospheric aerosol layer at Garmisch-Partenkirchen,” J. Geophys. Res. 1109 (2005).
  97. A. Burger and E. Ekhart, “Über die tägliche Zirkulation im Bereiche der Alpen,” Gerl. Beitr. Geophys. 49, 341-367 (1937).
  98. I. Vergeiner and E. Dreiseitl, “Valley winds and slope winds--observations and elementary thoughts,” Meteorol. Atmos. Phys. 36, 264-286 (1987). [CrossRef]
  99. M. Furger, J. Dommen, W. K. Graber, L. Poggio, A. Prévôt, S. Emeis, G. Grell, T. Trickl, B. Gomiscek, B. Neininger, and G. Wotawa, “The VOTALP Mesolcina Valley Campaign 1996--Concept, background and some highlights,” Atmos. Environ. 34, 1395-1412 (2000). [CrossRef]
  100. W. Carnuth and T. Trickl, “Transport studies with the IFU three-wavelength aerosol lidar during the VOTALP Mesolcina experiment,” Atmospheric Environment 34, 1425-14 (2000). [CrossRef]
  101. S. Kreipl, “Messung des aerosoltransports am alpennordrand mittels laserradar (lidar),” Ph.D. Dissertation (in German) (Universität Erlangen, 2006) pp. 195.
  102. R. R. Draxler and G. D. Hess, “An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition,” Aust. Meteorol. Mag. 47, 295-308 (1998) http://www.arl.noaa.gov/ready/hysplit4.html.
  103. VOTALP II, Vertical Ozone Transport in the Alps II, Final Report for the European Union, Contract No.: ENV4 CT970413, H.Kromp-Kolb, Coordinator, pp. 96 (Universität für Bodenkultur, Wien, Austria, 2000).
  104. L. M. Miloshevich, H. Vömel, D. N. Whiteman, B. M. Lesht, F. J. Schmidlin, and F. Russo, “Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation,” J. Geophys. Res. 111, D09S10 (2006). [CrossRef]
  105. J. R. Wang, P. Racette, M. E. Triesky, E. V. Browell, S. Ismail, and L. A. Chang, “Profiling of atmospheric water vapor with MIR and LASE,” IEEE Trans. Geosci. Remote Sen. 40, 1-9 (2002).
  106. L. S. Rothmann, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database, edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5-44 (2003).
  107. R. A. Toth, “Measurements of H216O line positions and strengths: 11610 to 12861 cm−1,” J. Mol. Spectrosc. 166, 176-183 (1994). [CrossRef]
  108. M.-F. Mérienne, A. Jenouvrier, C. Hermans, M. C. A. C. Vandaele, C. Clerbaux, P.-F. Coheur, R. Colin, S. Fally, and M. Bach, “Water vapor line parameters in the 13000-9250 cm−1 region,” J. Quant. Spectrosc. Radiat. Transfer 82, 99-117 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited