OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 12 — Apr. 20, 2008
  • pp: 2133–2145

Three-flat test with plates in horizontal posture

Maurizio Vannoni and Giuseppe Molesini  »View Author Affiliations

Applied Optics, Vol. 47, Issue 12, pp. 2133-2145 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (8937 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Measuring flats in the horizontal posture with interferometers is analyzed in detail, taking into account the sag produced by gravity. A mathematical expression of the bending is provided for a plate supported at three unevenly spaced locations along the edge. It is shown that the azimuthal terms of the deformation can be recovered from a three-flat measuring procedure, while the pure radial terms can only be estimated. The effectiveness of the iterative algorithm for data processing is also demonstrated. Experimental comparison on a set of three flats in horizontal and upright posture is provided.

© 2008 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: January 9, 2008
Revised Manuscript: March 20, 2008
Manuscript Accepted: March 24, 2008
Published: April 18, 2008

Maurizio Vannoni and Giuseppe Molesini, "Three-flat test with plates in horizontal posture," Appl. Opt. 47, 2133-2145 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. L. Rayleigh, “Interference bands and their application,” Nature 48, 212-214 (1893). [CrossRef]
  2. H. Barrell and R. Marriner, “Liquid surface interferometry,” Nature 162, 529-530 (1948). [CrossRef]
  3. G. D. Dew, “The measurement of optical flatness,” J. Sci. Instrum. 43, 409-415 (1966). [CrossRef] [PubMed]
  4. R. Brünnagel, H.-A. Oehring, and K. Steiner, “Fizeau interferometer for measuring the flatness of optical surfaces,” Appl. Opt. 7, 331-335 (1967). [CrossRef]
  5. J. P. Marioge, B. Bonino, and M. Mullot, “Standard of flatness: its application to Fabry-Perot interferometers,” Appl. Opt. 14, 2283-2285 (1975). [CrossRef] [PubMed]
  6. K.-E. Elssner, A. Vogel, J. Grzanna, and G. Schulz, “Establishing a flatness standard,” Appl. Opt. 33, 2437-2446 (1994). [CrossRef] [PubMed]
  7. J. Chen, D. Song, R. Zhu, Q. Wang, and L. Chen, “Large-aperture high-accuracy phase-shifting digital flat interferometer,” Opt. Eng. 35, 1936-1942 (1996). [CrossRef]
  8. I. Powell and E. Goulet, “Absolute figure measurements with a liquid-flat reference,” Appl. Opt. 37, 2579-2588 (1998). [CrossRef]
  9. M. Vannoni and G. Molesini, “Validation of absolute planarity reference plates with a liquid mirror,” Metrologia 42, 389-393(2005). [CrossRef]
  10. G. Schulz and J. Schwider, “Precise measurement of planeness,” Appl. Opt. 6, 1077-1084 (1967). [CrossRef] [PubMed]
  11. G. Schulz, J. Schwider, C. Hiller, and B. Kicker, “Establishing an optical flatness standard,” Appl. Opt. 10, 929-934 (1971). [CrossRef] [PubMed]
  12. J. Grzanna and G. Schulz, “Absolute testing of flatness standards at square-grid points,” Opt. Commun. 77, 107-112(1990). [CrossRef]
  13. G. Schulz and J. Grzanna, “Absolute flatness testing by the rotation method with optimal measuring error compensation,” Appl. Opt. 31, 3767-3780 (1992). [CrossRef] [PubMed]
  14. G. Schulz, “Absolute flatness testing by an extended rotation method using two angles of rotation,” Appl. Opt. 32, 1055-1059 (1993). [CrossRef] [PubMed]
  15. J. Grzanna, “Absolute testing of optical flats at points on a square grid: error propagation,” Appl. Opt. 33, 6654-6661(1994). [CrossRef] [PubMed]
  16. B. B. F. Oreb, D. I. Farrant, C. J. Walsh, G. Forbes, and P. S. Fairman, “Calibration of a 300 mm-aperture phase-shifting Fizeau interferometer,” Appl. Opt. 39, 5161-5171 (2000). [CrossRef]
  17. S. Sonozaki, K. Iwata, and Y. Iwahashi, “Measurement of profiles along a circle on two flat surfaces by use of a Fizeau interferometer with no standard,” Appl. Opt. 42, 6853-6858(2003). [CrossRef] [PubMed]
  18. B. S. Fritz, “Absolute calibration of an optical flat,” Opt. Eng. 33, 379-383 (1984).
  19. C. Ai and J. C. Wyant, “Absolute testing of flats by using even and odd functions,” Appl. Opt. 32, 4698-4705 (1993). [CrossRef] [PubMed]
  20. C. J. Evans and R. N. Kestner, “Test optics error removal,” Appl. Opt. 35, 1015-1021 (1996). [CrossRef] [PubMed]
  21. P. Hariharan, “Interferometric testing of optical surfaces: absolute measurement of flatness,” Opt. Eng. 36, 2478-2481(1997). [CrossRef]
  22. C. J. Evans, “Comment on the paper 'Interferometric testing of optical surfaces: absolute measurement of flatness',” Opt. Eng. 37, 1880-1882 (1998). [CrossRef]
  23. R. E. Parks, L.-Z. Shao, and C. J. Evans, “Pixel-based absolute topography test for three flats,” Appl. Opt. 37, 5951-5956(1998). [CrossRef]
  24. V. Greco, R. Tronconi, C. Del Vecchio, M. Trivi, and G. Molesini, “Absolute measurement of planarity with Fritz's method: uncertainty evaluation,” Appl. Opt. 38, 2018-2027 (1999). [CrossRef]
  25. K. R. Freischlad, “Absolute interferometric testing based on reconstruction of rotational shear,” Appl. Opt. 40, 1637-1648(2001). [CrossRef]
  26. M. F. Küchel, “A new approach to solve the three flat problem,” Optik (Jena) 112, 381-391 (2001). [CrossRef]
  27. U. Griesmann, “Three-flat test solutions based on simple mirror symmetry,” Appl. Opt. 45, 5856-5865 (2006). [CrossRef] [PubMed]
  28. W. Gao, P. S. Huang, T. Yamada, and S. Kiyono, “A compact and sensitive two-dimensional angle probe for flatness measurement of large silicon wafers,” Precis. Eng. 26, 396-404 (2002). [CrossRef]
  29. M. Schulz and C. Elster, “Traceable multiple sensor system for measuring curved surface profiles with high accuracy and high lateral resolution,” Opt. Eng. 45, 060503 (2006). [CrossRef]
  30. R. D. Geckeler, “Optimal use of pentaprism in highly accurate deflectometric scanning,” Meas. Sci. Technol. 18, 115-125(2007). [CrossRef]
  31. P. C. V. Mallik, C. Zhao, and J. H. Burge, “Measurement of a 2 m flat using a pentaprism scanning system,” Opt. Eng. 46, 023602 (2007). [CrossRef]
  32. J. Yellowhair and J. H. Burge, “Analysis of a scanning pentaprism system for measurements of large flat mirrors,” Appl. Opt. 46, 8466-8474 (2007). [CrossRef] [PubMed]
  33. U. Griesmann, Q. Wang, and J. Soons, “Three-flat tests including mounting-induced deformations,” Opt. Eng. 46, 093601(2007). [CrossRef]
  34. E. E. Bloemhof, J. C. Lam, V. A. Feria, and Z. Chang, “Precise determination of the zero-gravity surface figure of a mirror without gravity-sag modelling,” Appl. Opt. 46, 7670-7678(2007). [CrossRef] [PubMed]
  35. M. Vannoni and G. Molesini, “Iterative algorithm for three flat test,” Opt. Express 15, 6809-6816 (2007). [CrossRef] [PubMed]
  36. M. Vannoni and G. Molesini, “Absolute planarity with three flat test: an iterative approach with Zernike polynomials,” Opt. Express 16, 340-354 (2008). [CrossRef] [PubMed]
  37. A. Nádai, “Die verbiegungen in einzelnen punkten unterstützter kreisförmiger platten,” Physik Zeitschr. XXIII, 366-376 (1922).
  38. A. E. H. Love, Treatise on the Mathematical Theory of Elasticity (Dover, 1944), p. 481.
  39. W. B. Emerson, “Determination of planeness and bending of optical flats,” J. Res. Natl. Bur. Stand. 49, 241-247 (1952).
  40. W. A Bassali, “The transverse flexure of thin elastic plates supported at several points,” Proc. Cambridge Philos. Soc. 53, 728-742 (1957). [CrossRef]
  41. S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd ed. (McGraw-Hill, 1959), pp. 56-58, 72-74, and 293-295.
  42. L. Landau and E. Lifchitz, Théorie de l'Élasticité (MIR, 1967), p. 67.
  43. L. A. Selke, “Theoretical elastic deflections of a thick horizontal circular mirror on a ring support,” Appl. Opt. 9, 149-153 (1970). [CrossRef] [PubMed]
  44. M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1975), pp. 464-466 and 767-772.
  45. V. B. Gubin and V. N. Sharonov, “Algorithm for reconstructing the shape of optical surfaces from the results of experimental data,” Sov. J. Opt. Technol. 57, 147-148 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited