OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 12 — Apr. 20, 2008
  • pp: 2161–2170

Effects of sample polydispersity and beam profile on ellipsometric light scattering

Reinhard Sigel and Andreas Erbe  »View Author Affiliations

Applied Optics, Vol. 47, Issue 12, pp. 2161-2170 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (276 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ellipsometric light scattering (ELS) is shown to selectively extract the coherent scattering contribution representing the averaged properties of a particle ensemble. This property is essential for the previously reported [Erbe et al., Phys. Rev. E 73, 031406 (2006)] high sensitivity of ELS to the refractive index profile at particle interfaces. Two mechanisms for coherence loss in ELS measurements are discussed: sample polydispersity and illumination by a Gaussian beam. Suitable experimental quantities for a distinction of coherent and incoherent scattering contributions are introduced. Furthermore, the application of the concepts to reflection ellipsometry at rough surfaces is discussed.

© 2008 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(240.5770) Optics at surfaces : Roughness
(260.2130) Physical optics : Ellipsometry and polarimetry
(260.5430) Physical optics : Polarization
(240.1485) Optics at surfaces : Buried interfaces
(290.5855) Scattering : Scattering, polarization

ToC Category:
Physical Optics

Original Manuscript: January 3, 2008
Revised Manuscript: February 5, 2008
Manuscript Accepted: February 5, 2008
Published: April 18, 2008

Reinhard Sigel and Andreas Erbe, "Effects of sample polydispersity and beam profile on ellipsometric light scattering," Appl. Opt. 47, 2161-2170 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. J. Lyklema, Fundamentals of Interface and Colloid Science. Volume II: Solid-Liquid Interfaces (Academic, 1995).
  2. J. Oberdisse, “Adsorption and grafting on colloidal interfaces studied by scattering techniques,” Curr. Opin. Colloid Interface Sci. 12, 3-8 (2007). [CrossRef]
  3. N. Kučerka, M.-P. Nieh, J. Pencer, T. Harroun, and J. Katsaras, “The study of liposomes, lamellae and membranes using neutrons and X-rays,” Curr. Opin. Colloid Interface Sci. 12, 17-22 (2007). [CrossRef]
  4. A. Erbe, K. Tauer, and R. Sigel, “Ellipsometric light scattering for the characterization of thin layers on dispersed colloidal particles,” Phys. Rev. E 73, 031406 (2006). [CrossRef]
  5. A. Erbe, K. Tauer, and R. Sigel, “Ion distribution around electrostatically stabilized polystyrene latex particles studied by ellipsometric light scattering,” Langmuir 23, 452-459(2007). [CrossRef] [PubMed]
  6. A. Erbe and R. Sigel, “Tilt angle of lipid acyl chains in unilamellar vesicles determined by ellipsometric light scattering,” Eur. Phys. J. E 22, 303-309 (2007). [CrossRef] [PubMed]
  7. M. Stieger, W. Richtering, J. S. Pedersen, and R. Lindner, “Small-angle neutron scattering study of structural changes in temperature sensitive microgel colloids,” J. Chem. Phys. 120, 6197-6206 (2004). [CrossRef] [PubMed]
  8. M. Zackrisson, A. Stradner, P. Schurtenberger, and J. Bergenholtz, “Small-angle neutron scattering on a core-shell colloidal system: a contrast variation study,” Langmuir 21, 10835-10845 (2005). [CrossRef] [PubMed]
  9. J. D. Gaskill, “Gaussian Beams,” in Optical Engineer's Desk Reference, W. L. Wolfe, ed. (Optical Society of America, 2003), pp. 161-174. Note that in his definition of the Gaussian beam differs by a factor of π from the definition used by Gouesbet and co-workers and, therefore, also in this paper.
  10. R. M.A. Azzam and N. M. Bazhara, Ellipsometry and Polarized Light (Elsevier, 1977).
  11. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  12. M. I. Mishchenko, J. W. Hovenier, and D. W. Mackowski, “Singe scattering by a small volume element,” J. Opt. Soc. Am. A 21, 71-87 (2004). [CrossRef]
  13. M. I. Mishchenko, L. Liu, and G. Videen, “Conditions of applicability of the single-scattering approximation,” Opt. Express 157522-7527 (2007). [CrossRef] [PubMed]
  14. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).
  15. R. M.A. Azzam, “Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal,” Opt. Lett. 2, 148-150 (1978). [CrossRef] [PubMed]
  16. D. Schrader, “Physical properties of poly(styrene),” in Polymer Handbook, 4th ed., J.Brandrup, E.H.Immergut, and E.A.Grulke, eds. (Wiley, 1999), pp. V/91-V/96.
  17. G. Gouesbet and G. Grehan, “On the scattering of light by a Mie scatter center located on the axis of an axisymmetric light profile,” J. Opt. (Paris) 13, 97-103 (1982). [CrossRef]
  18. G. Gouesbet, G. Grehan, and B. Maheu, “Scattering of a Gaussian-beam by a Mie scatter center using a Bromwich formalism,” J. Opt. (Paris) 16, 83-93 (1985). [CrossRef]
  19. G. Gouesbet, G. Grehan, and B. Maheu, “Expressions to compute the coefficients gnm in the generalized Lorenz-Mie theory using finite series,” J. Opt. (Paris) 19, 35-48 (1988). [CrossRef]
  20. G. Gouesbet, B. Maheu, and G. Gréhan, “Light-scattering from a sphere arbitrarily located in a Gaussian-beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427-1443(1988). [CrossRef]
  21. B. Maheu, G. Gouesbet, and G. Grehan, “A concise presentation of the generalized Lorenz-Mie theory for arbitrary location of the scatterer in an arbitrary incident profile,” J. Op. (Paris) 19, 59-67 (1988). [CrossRef]
  22. F. Onofri, G. Grehan, and G. Gouesbet, “Electromagnetic scattering from a multilayered sphere located in an arbitrary beam,” Appl. Opt. 34, 7113-7124 (1995). [CrossRef] [PubMed]
  23. J. S. Higgins and H. C. Benoît, Polymers and Neutron Scattering (Clarendon, 1996).
  24. D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292-3302(1979). [CrossRef]
  25. F. Toigo, A. Marvin, V. Celli, and N. R. Hill, “Optical properties of rough surfaces: general theory and the small roughness limit,” Phys. Rev. B 15, 5618-5626 (1977). [CrossRef]
  26. J. R. Blanco and P. J. McMarr, “Roughness measurements of Si and Al by variable angle spectroscopic ellipsometry,” Appl. Opt. 30, 3210-3220 (1991). [CrossRef] [PubMed]
  27. J. Lekner, Theory of Reflection (Martinus Nijhoff, 1987).
  28. R. Sigel and G. Strobl, “Light scattering by fluctuations within a nematic wetting layer in an isotropic phase of a liquid crystal,” J. Chem. Phys. 112, 1029-1039 (2000). [CrossRef]
  29. G. E. Yakubov, B. Loppinet, H. Zhang, J. Rühe, R. Sigel, and G. Fytas, “Collective dynamics of an end-grafted polymer brush in solvents of varying quality,” Phys. Rev. Lett. 92, 115501(2004). [CrossRef] [PubMed]
  30. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge, 2002); http://www.giss.nasa.gov/~crmim/publications/(2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited