OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 13 — May. 1, 2008
  • pp: 2215–2226

Radiative transfer codes for atmospheric correction and aerosol retrieval: intercomparison study

Svetlana Y. Kotchenova, Eric F. Vermote, Robert Levy, and Alexei Lyapustin  »View Author Affiliations


Applied Optics, Vol. 47, Issue 13, pp. 2215-2226 (2008)
http://dx.doi.org/10.1364/AO.47.002215


View Full Text Article

Enhanced HTML    Acrobat PDF (3611 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Results are summarized for a scientific project devoted to the comparison of four atmospheric radiative transfer codes incorporated into different satellite data processing algorithms, namely, 6SV1.1 (second simulation of a satellite signal in the solar spectrum, vector, version 1.1), RT3 (radiative transfer), MODTRAN (moderate resolution atmospheric transmittance and radiance code), and SHARM (spherical harmonics). The performance of the codes is tested against well-known benchmarks, such as Coulson’s tabulated values and a Monte Carlo code. The influence of revealed differences on aerosol optical thickness and surface reflectance retrieval is estimated theoretically by using a simple mathematical approach. All information about the project can be found at http://rtcodes.ltdri.org .

© 2008 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(290.1310) Scattering : Atmospheric scattering

ToC Category:
Atmospheric and oceanic optics

History
Original Manuscript: January 3, 2008
Revised Manuscript: March 15, 2008
Manuscript Accepted: March 17, 2008
Published: April 24, 2008

Citation
Svetlana Y. Kotchenova, Eric F. Vermote, Robert Levy, and Alexei Lyapustin, "Radiative transfer codes for atmospheric correction and aerosol retrieval: intercomparison study," Appl. Opt. 47, 2215-2226 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-13-2215


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. F. Vermote, N. Z. El Saleous, and C. O. Justice, “Atmospheric correction of MODIS data in the visible to middle infrared: first results,” Remote Sens. Environ. 83, 97-111(2002).
  2. A. Lyapustin and Y. Wang, “MAIAC: multi-angle implementation of atmospheric correction for MODIS,” Algorithm Theoretical Basis Document, http://neptune. gsfc.nasa.gov/bsb/subpages/index.php?section=Projects&content=MAIAC%20ATDB (2007), p. 69.
  3. P. Y. Deschamps, M. Herman, and D. Tanré, “Modeling of the atmospheric effects and its application to the remote sensing of ocean color,” Appl. Opt. 22, 3751-3758 (1983).
  4. F.-M. Bréon, “Reflectance of broken cloud fields: simulation and parameterization,” J. Atmos. Sci. 49, 1221-1232 (1992). [CrossRef]
  5. J.Lenoble, ed., Radiative Transfer in Scattering and absorbing Atmospheres: Standard Computational Procedures (A. Deepak, 1985).
  6. A. Lyapustin, “Radiative transfer code SHARM-3D for radiance simulations over a non-Lambertian nonhomogeneous surface: intercomparison study,” Appl. Opt. 41, 5607-5615(2002). [CrossRef]
  7. M.-J. Kim, G. M. Skofronick-Jackson, and J. A. Weiman, “Intercomparison of millimeter-wave radiative transfer models,” IEEE Trans. Geosci. Remote Sens. 42 (9), 1882-1890(2004).
  8. R. F. Cahalan, L. Oreopoulos, A. Marshak, K. F. Evans, A. Davis, R. Pincus, K. Yetzer, B. Mayer, R. Davies, T. Ackerman, H. Barker, E. Clothiaux, R. Ellingson, M. Garay, E. Kassianov, S. Kinne, A. Macke, W. O'Hirok, P. Partain, S. Prigarin, A. Rublev, G. Stephens, F. Szczap, E. Takara, T. Várnai, G. Wen, and T. Zhuravleva, “The I3RC: bringing together the most advanced radiative transfer tools for cloudy atmospheres,” Bull. Am. Meteorol. Soc. 86, 1275-1293 (2005).. [CrossRef]
  9. J.-L. Widlowski, M. Taberner, B. Pinty, V. Bruniquel-Pinel, M. Disney, R. Fernandes, J.-P. Gastellu-Etchegorry, N. Gobron, A. Kuusk, T. Lavergne, S. Leblanc, P. E. Lewis, E. Martin, M. Mõttus, P. R. J. North, W. Qin, M. Robustelli, N. Rochdi, R. Ruiloba, C. Soler, R. Thompson, W. Verhoef, M. M. Verstraete, and D. Xie, “Third radiation transfer model intercomparison (RAMI) exercise: documenting progress in canopy reflectance models,” J. Geophys. Res. 112, D09111 (2007) . [CrossRef]
  10. T. Z. Muldashev, A. I. Lyapustin, and U. M. Sultangazin, “Spherical harmonics method in the problem of radiative transfer in the atmosphere-surface system,” J. Quant. Spectrosc. Radiat. Transfer 61, 393-404 (1999). [CrossRef]
  11. S. Y. Kotchenova and E. F. Vermote, “A vector version of the 6S radiative transfer code for atmospheric correction of satellite data: an Overview,” presented at 29th Review of Atmospheric Transmission Models Meeting, Lexington, Mass., USA, (13-14 June 2007).
  12. K. F. Evans and G. L. Stephens, “A new polarized atmospheric radiative transfer model,” J. Quant. Spectrosc. Radiat. Transfer 46, 413-423 (1991). [CrossRef]
  13. R. C. Levy, L. A. Remer, S. Mattoo, E. F. Vermote, and Y. Kaufman, “Second-generation algorithm for retrieving aerosol properties over land from MODIS spectral reflectance,” J. Geophys. Res. 112, D13211 (2007). . [CrossRef]
  14. A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, Jr., S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer modeling for atmospheric correction,” Proc. SPIE 3756, 348-353 (1999).
  15. P. K. Acharya, A. Berk, G. P. Anderson, N. F. Larsen, S.-C. Tsay, and K. H. Stamnes, “MODTRAN 4: multiple scattering and bi-directional reflectance distribution function (BRDF) upgrades to MODTRAN,” Proc. SPIE 3756, 354-362 (1999).
  16. A. Berk, L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Robertson, J. H. Chetwynd, and S. M. Adler-Golden, “MODTRAN cloud and multiple scattering upgrades with application to AVIRIS,” Remote Sens. Environ. 65, 367-375 (1998).
  17. A. I. Lyapustin, “Radiative transfer code SHARM for atmospheric and terrestrial application,” Appl. Opt. 44, 7764-7772(2005). [CrossRef]
  18. K. L. Coulson, J. V. Dave, and Z. Sekera, Tables Related to Radiation Emerging from a Planetary Atmosphere with Rayleigh Scattering (U. California Press, 1960).
  19. “Official code comparison Web site of the MODIS atmospheric correction group,” http://rtcodes.ltdri.org. [CrossRef]
  20. S. Y. Kotchenova, E. F. Vermote, R. Matarrese, and F. Klemm, “Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance,” Appl. Opt. 45, 6762-6774 (2006).
  21. S. Y. Kotchenova and Vermote, “Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II: Lambertian and anisotropic surfaces,” Appl. Opt. 46, 4455-4464 (2007).
  22. E. F. Vermote, D. Tanré, J. L. Deuzé, M. Herman, J. J. Morcrette, S. Y. Kotchenova, and T. Miura, Second simulation of the satellite signal in the solar spectrum (6S), 6S user guide version 3, November 2006, http://6s.ltdri.org.
  23. K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502-2509 (1988).
  24. K. Stamnes, S.-C. Tsay, W. Wiscombe, and I. Laszlo, “DISORT, a general-purpose FORTRAN program for discrete-ordinate-method radiative transfer in scattering and emitting layered media: documentation of methodology,” version 1.1 (March 2000), available as “DISORTReport1.1.pdf” at ftp://climate1.gsfc.nasa.gov/wiscombe/Multiple_Scatt/. [CrossRef]
  25. E. Vermote and D. Tanré, “Analytical expressions for radiative properties of planar Rayleigh scattering media, including polarization contributions,” J. Quant. Spectrosc. Radiat. Transfer 47, 305-314 (1992).
  26. B. M. Herman, T. R. Caudill, D. E. Flittner, K. J. Thome, and A. Ben-David, “Comparison of the Gauss-Seidel spherical polarized radiative transfer code with other radiative transfer codes,” Appl. Opt. 34, 4563-4572 (1995).
  27. K. Masuda, “Infrared sea surface emissivity including multiple reflection effect for isotropic Gaussian slope distribution model,” Remote Sens. Environ. 103, 488-496 (2006). [CrossRef]
  28. M. I. Mishchenko, A. A. Lacis, and L. D. Travis, “Errors induced by the neglect of polarization in radiance calculations for Rayleigh-scattering atmospheres,” J. Quant. Spectrosc. Radiat. Transfer 51, 491-510 (1994).
  29. A. A. Lacis, J. Chowdhary, M. I. Mishchenko, and B. Cairns, “Modeling errors in diffuse-sky radiation: vector vs. scalar treatment,” J. Geophys. Res. 25,135-138 (1998). [CrossRef]
  30. O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590-608 (2002).
  31. N. C. Hsu, S.-C. Tsay, M. D. King, and J. R. Herman, “Aerosol properties over bright-reflecting source regions,” IEEE Trans. Geosci. Remote Sens. 42, 557- 569 (2004).
  32. W. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505-1509 (1980).
  33. E. Shettle, Remote Sensing Division Code 7227, Naval Research Laboratory, Washington, DC 20375-5351 (personal communication, 2 October 2007). [CrossRef]
  34. R. C. Levy, L. A. Remer, and Y. J. Kaufman, “Effects of neglecting polarization on the MODIS aerosol retrieval over land,” IEEE Trans. Geosci. Remote Sens. 42, 2576-2583 (2004).
  35. O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle non-sphericity in remote sensing of desert dust,” J. Geophys. Res. 111, 1-34 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited