OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 13 — May. 1, 2008
  • pp: 2241–2251

Complete polarization conversion using one crystal with dual transverse Pockels effect

Changsheng Li  »View Author Affiliations


Applied Optics, Vol. 47, Issue 13, pp. 2241-2251 (2008)
http://dx.doi.org/10.1364/AO.47.002241


View Full Text Article

Enhanced HTML    Acrobat PDF (3475 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on dual transverse Pockels effect, complete polarization conversion can be achieved by using only one electro-optic crystal and its two externally applied voltages. The electro-optic phase retardation and the azimuth angle of the field-induced principal dielectric axes of the crystal can be independently and linearly controlled by the amplitude and direction of the applied electric field, and the formulas for this correlation are deduced for arbitrary input and output polarization states. The candidate crystals mainly include the uniaxial crystals of 3 m , 6 ¯ 2 m , and 32 symmetry groups, and the cubic crystals of 4 ¯ 3 m and 23 symmetry groups. Theoretical analysis demonstrates that one crystal exhibiting both dual transverse Pockels effect and optical activity can also be used for complete polarization converter. The continuous polarization rotation of a linearly polarized light from 0 ° to 180 ° has been performed experimentally by use of single lithium niobate crystal with four lateral electrodes. In addition the light beam position- dependent polarization conversion by using a bulk electro-optic crystal is also measured in the ex periment. This new type of polarization converter will have potential applications in many fields due to its simple configuration, explicit control logic of polarization conversion, and lower power consumption.

© 2008 Optical Society of America

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.4510) Fiber optics and optical communications : Optical communications
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(230.2090) Optical devices : Electro-optical devices
(260.1180) Physical optics : Crystal optics
(260.5430) Physical optics : Polarization

ToC Category:
Optical Devices

History
Original Manuscript: November 14, 2007
Revised Manuscript: February 27, 2008
Manuscript Accepted: March 19, 2008
Published: April 24, 2008

Citation
Changsheng Li, "Complete polarization conversion using one crystal with dual transverse Pockels effect," Appl. Opt. 47, 2241-2251 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-13-2241


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol. 24, 4750-4762 (2006). [CrossRef]
  2. A. E. Willner, S. M. R. M. Nezam, L. Yan, Z. Pan, and M. C. Hauer, “Monitoring and control of polarization-related impairments in optical fiber systems,” J. Lightwave Technol. 22, 106-125 (2004). [CrossRef]
  3. S. Stenholm, “Polarization coding of quantum information,” Opt. Commun. 123, 287-296 (1996). [CrossRef]
  4. N. G. Walker and G. R. Walker, “Polarization control for coherent communication,” J. Lightwave Technol. 8, 438-458 (1990). [CrossRef]
  5. P. Oswald and C. K. Madsen, “Deterministic analysis of endless tuning of polarization controllers,” J. Lightwave Technol. 24, 2932-2939 (2006). [CrossRef]
  6. K. Hirabayashi and C. Amano, “Feed-forward continuous and complete polarization control with a PLZT rotatable-variable waveplate and inline polarimeter,” J. Lightwave Technol. 21, 1920-1932 (2003). [CrossRef]
  7. K. Hirabayashi, “Electrically controllable liquid-crystal rotatable wave plate with variable phase retardation,” Appl. Opt. 44, 3552-3559 (2005). [CrossRef] [PubMed]
  8. A. J. Davidson, S. J. Elston, and E. P. Raynes, “Investigation into chiral active waveplates,” J. Appl. Phys. 99, 093109(2006). [CrossRef]
  9. C. Li and X. Cui, “Pulse-controlled polarization converter and its applications,” Acta Photonica Sin. 26, 929-934 (1997).
  10. M. Kurono, “High speed polarization control using a four-electrode LN crystal,” Trans. Inst. Electr. Eng. Jpn. 118-C, 649-655 (1998).
  11. J. Shi, X. Chen, Y. Xia, and Y. Chen, “Polarization control by use of the electro-optic effect in periodically poled lithium niobate,” Appl. Opt. 42, 5722-5725 (2003). [CrossRef] [PubMed]
  12. M. V. Kotlyar, L. Bolla, M. Midrio, L. O'Faolain, and T. F. Krauss, “Compact polarization converter in InP-based material,” Opt. Express 13, 5040-5045 (2005). [CrossRef] [PubMed]
  13. S. Haxha, F. Abdel-Malek, and B. M. A. Rahman, “Analysis of polarization conversion in AlGaAs/GaAs electrooptic polarization converter,” Opt. Commun. 262, 47-56 (2006). [CrossRef]
  14. J. Kobayashi, T. Asahi, M. Ichiki, K. Saito, T. Shimasaki, H. Yoshii, Y. Itagaki, and H. Ikawa, “Optical study on the phase transition of lead lanthanum zirconate titanate PLZT ceramics,” Phys. Rev. B 51, 763-779 (1995). [CrossRef]
  15. J. S. Kang and D. A. Dunmur, “Electric-filed-induced optical rotation in the pre-transitional isotropic of chiral nematic liquid crystal,” Phys. Rev. E 51, 2129-2136 (1995). [CrossRef]
  16. L. Chen and W. She, “Arbitrary-to-linear or linear-to-arbitrary polarization controller based on Faraday and Pockels effects in a single BGO crystal,” Opt. Express 15, 15589-15594(2007). [CrossRef] [PubMed]
  17. E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, 1993).
  18. G. N. Ramachandran and S. Ramaseshan, “Magneto-optic rotation in birefringent media- application of the sphere,” J. Opt. Soc. Am. 42, 49-56 (1952). [CrossRef]
  19. C. F. Buhrer, L. Ho, and J. Zucker, “Electrooptic effect in optically active crystal,” Appl. Opt. 3, 517-521 (1964). [CrossRef]
  20. W. J. Tabor and F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” J. Appl. Phys. 40, 2760-2765 (1969). [CrossRef]
  21. C. F. Buhrer, L. R. Bloom, and D. H. Baird, “Electro-optic light modulation with cubic crystal,” Appl. Opt. 2, 839-846(1963). [CrossRef]
  22. C. L. Hu, “Linear electro-optic retardation schemes for the twenty classes of linear electro-optic crystals and their applications,” J. Appl. Phys. 38, 3275-3284 (1967). [CrossRef]
  23. D. Eimerl, “Crystal symmetry and the electrooptic effect,” IEEE J. Quantum Electron. 23, 2104-2115 (1987). [CrossRef]
  24. D. Kalymnios and F. C. Widdis, “Duplex polarization modulation with cubic crystals,” J. Phys. D 3, 884-888 (1970). [CrossRef]
  25. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley & Sons, 1984).
  26. C. Li, X. Cui, and T. Yoshino, “Measurement of AC electric power based on dual transverse Pockels effect,” IEEE Trans. Instrum. Meas. 50, 697 (2001). [CrossRef]
  27. C. Li and T. Yoshino, “Optical voltage sensor based on electrooptic crystal multiplier,” J. Lightwave Technol. 20, 843-849(2002). [CrossRef]
  28. T. J. Tayag, T. E. Batchman, and J. J. Sluss, “Direct measurement of the electrogyration effect in bismuth silicon oxide,” Appl. Opt. 31, 625-629 (1992). [CrossRef] [PubMed]
  29. F. Vachss and L. Hesselink, “Measurement of the electrogyratory and electro-optic effects in BSO and BGO,” Opt. Commun. 62, 159-165 (1987). [CrossRef]
  30. I. P. Kaminow and E. H. Turner, “Electrooptic light modulation,” Appl. Opt. 5, 1612-1628 (1966). [CrossRef] [PubMed]
  31. D. Nickel, C. Stolzenburg, A. Beyertt, and A. Giesen, “200 kHz electro-optic switch for ultrafast laser systems,” Rev. Sci. Instrum. 76, 033111 (2005). [CrossRef]
  32. X. Yin, J. Wang, and S. Zhang, “La3Ga5SiO14 single-crystal Q switch used as an electro-optic device,” Appl. Opt. 42, 7188-7190 (2003). [CrossRef]
  33. F. K. von Willisen, “A tunable birefringent filter,” Appl. Opt. 5, 97-104 (1966). [CrossRef] [PubMed]
  34. C. F. Buhrer, “Wide-band electrooptic light modulation utilizing an asynchronous traveling-wave interaction,” Appl. Opt. 4, 545-550 (1965). [CrossRef]
  35. S. Thaniyavarn, “Wavelength independent, optical damage immune z-propagation LiNbO3 waveguide polarization converter,” Appl. Phys. Lett. 47, 674-677 (1985). [CrossRef]
  36. S. Sudo, A. Cordova-Plaza, R. L. Byer, and H. J. Shaw, “MgO: MgO:LiNbO3 single-crystal fiber with magnesium-ion in-diffused cladding,” Opt. Lett. 12, 938-940 (1987). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited