Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Temperature-insensitive laser frequency stabilization with magnetic tuning

Not Accessible

Your library or personal account may give you access

Abstract

We have implemented a tunable laser frequency lock with a wide recapture range and low sensitivity to temperature fluctuation, based on electronically power-normalized Doppler-broadened absorption spectra. The method requires no frequency modulation. A distributed-feedback diode laser locked to this system exhibits submegahertz stability over many hours. It has been used to magneto-optically trap rubidium atoms for a full day.

© 2008 Optical Society of America

Full Article  |  PDF Article
More Like This
Frequency locking of tunable diode lasers to a rubidium-stabilized ring-cavity resonator

Ayan Banerjee, Dipankar Das, Umakant D. Rapol, and Vasant Natarajan
Appl. Opt. 43(12) 2528-2531 (2004)

Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor

Kristan L. Corwin, Zheng-Tian Lu, Carter F. Hand, Ryan J. Epstein, and Carl E. Wieman
Appl. Opt. 37(15) 3295-3298 (1998)

Compact stabilized semiconductor laser for frequency metrology

Wei Liang, Vladimir S. Ilchenko, Danny Eliyahu, Elijah Dale, Anatoliy A. Savchenkov, David Seidel, Andrey B. Matsko, and Lute Maleki
Appl. Opt. 54(11) 3353-3359 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved