OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 13 — May. 1, 2008
  • pp: 2312–2316

Temperature-insensitive laser frequency stabilization with magnetic tuning

Lucas J. Willis and Michael J. Lim  »View Author Affiliations


Applied Optics, Vol. 47, Issue 13, pp. 2312-2316 (2008)
http://dx.doi.org/10.1364/AO.47.002312


View Full Text Article

Enhanced HTML    Acrobat PDF (4417 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have implemented a tunable laser frequency lock with a wide recapture range and low sensitivity to temperature fluctuation, based on electronically power-normalized Doppler-broadened absorption spectra. The method requires no frequency modulation. A distributed-feedback diode laser locked to this system exhibits submegahertz stability over many hours. It has been used to magneto-optically trap rubidium atoms for a full day.

© 2008 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(300.1030) Spectroscopy : Absorption
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 1, 2008
Manuscript Accepted: March 1, 2008
Published: April 28, 2008

Citation
Lucas J. Willis and Michael J. Lim, "Temperature-insensitive laser frequency stabilization with magnetic tuning," Appl. Opt. 47, 2312-2316 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-13-2312


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. J. Wallard, “Frequency stabilization of helium-neon laser by saturated absorption in iodine vapor,” J. Phys. E 5, 926-930 (1972). [CrossRef]
  2. T. P. Dinneen, C. D. Wallace, and P. L. Gould, “Narrow linewidth, highly stable, tunable diode-laser system,” Opt. Commun. 92, 277-282 (1992). [CrossRef]
  3. K. L. Corwin, Z. T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt. 37, 3295-3298 (1998). [CrossRef]
  4. N. P. Robins, B. J. J. Slagmolen, D. A. Shaddock, J. D. Close, and M. B. Gray, “Interferometric, modulation-free laser stabilization,” Opt. Lett. 27, 1905-1907 (2002). [CrossRef]
  5. C. I. Sukenik, H. C. Busch, and M. Shiddiq, “Modulation-free laser frequency stabilization and detuning,” Opt. Commun. 203, 133-137 (2002). [CrossRef]
  6. C.-C. Chou, T. Lin, P.-C. Huang, and M.-H. Chien, “Modulation-free laser frequency stabilization to molecular absorption using single acoustooptic frequency shifter,” IEEE Photon. Technol. Lett. 16, 1948-1950 (2004). [CrossRef]
  7. J. A. Kerckhoff, C. D. Bruzewicz, R. Uhl, and P. K. Majumder, “A frequency stabilization method for diode lasers utilizing low-field Faraday polarimetry,” Rev. Sci. Instrum. 76, 093108 (2005). [CrossRef]
  8. M. Maric and A. Luiten, “Power-insensitive side locking for laser frequency stabilization,” Opt. Lett. 30, 1153-1155(2005). [CrossRef] [PubMed]
  9. V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249-255(2006). [CrossRef]
  10. http://www.analog.com/UploadedFiles/Data_Sheets/AD534.pdf.
  11. P. C. D. Hobbs, “Ultrasensitive laser measurement without tears,” Appl. Opt. 36, 903-920 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited