OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 13 — May. 1, 2008
  • pp: 2326–2345

Unsupervised clustering approaches to color classification for color-based image code recognition

Cheolho Cheong, Gordon Bowman, and Tack-Don Han  »View Author Affiliations


Applied Optics, Vol. 47, Issue 13, pp. 2326-2345 (2008)
http://dx.doi.org/10.1364/AO.47.002326


View Full Text Article

Enhanced HTML    Acrobat PDF (6379 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Color-vision-based applications for mobile phones has become a subject of special interest lately. It would be interesting to investigate an unsupervised, adaptive, and fast algorithm that can classify color components into color clusters. We propose a hierarchical clustering approach using a single-linkage algorithm and a k-means clustering approach to color classification for color-based image code recognition in mobile computing environments. We also measured the performance of the proposed algorithms by color channel stretch, which is a simple color-correction method. Experimental results show that the single-linkage method is more robust than previous algorithms used in experiments with varying cameras and print materials. In particular the k-means-based method with color channel stretching has the highest performance and is the most robust under varying environment conditions such as illuminants, cameras, and print materials.

© 2008 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1720) Vision, color, and visual optics : Color vision

ToC Category:
Vision, color, and visual optics

History
Original Manuscript: November 5, 2007
Revised Manuscript: January 15, 2008
Manuscript Accepted: February 16, 2008
Published: April 28, 2008

Virtual Issues
Vol. 3, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Cheolho Cheong, Gordon Bowman, and Tack-Don Han, "Unsupervised clustering approaches to color classification for color-based image code recognition," Appl. Opt. 47, 2326-2345 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-13-2326


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Johnson, H. Jellinek, L. Klotz, R. Rao, and S. Card, “Bridging the paper and electronic worlds: the paper user interface,” in Proceedings of Interact '93 and CHI'93 Conference on Human Factors in Computing Systems, S. Ashlund, K. Mullet, A. Henderson, E. Hollnagel, and T. White, eds. (Association for Computing Machinery Press, 1993), pp. 507-512.
  2. D. L. Hecht, “Printed embedded data graphical user interfaces,” IEEE Comput. Graphics Appl. 34, 47-55 (2001).
  3. L. Nelson, S. Ichimura, E. R. Pedersen, and L. Adams, “Palette: a paper interface for giving presentations,” in Proceedings of ACM SIGCHI Conference on Human Factors and Computing Systems, M. G. William and M. W. Altom, eds. (Association for Computing Machinery Press, 1999), pp. 354-361.
  4. T. Hautala, J. Kallenbach, M. Nuutinen, L. Salo, T. Venho, A. Bäck, C. Bäckström, L. Hakola, and T. Järvinen, “PrintAccess,” http://www.media.hut.fi/GTTS/GAiF/GAiF2_2005.htm#PrintAccess--Final Report.
  5. H. Usuda, M. Suzuku, and Maeda, Research result report on creation and transmission of digital contents using image recognition technology (summary version), Project Code IMS 0359, Sony Corporation, Japan, 2004.
  6. K. D. Hunter, “Automatic access of internet content with a camera-enabled cell phone,” U.S. patent 6,993,573 (United States Patent and Trademark Office, 2006).
  7. T. Pavlidis, J. Swartz, and Y. P. Wang, “Fundamentals of bar code information theory,” IEEE Comput. Graphics Appl. 23, 74-86 (1990).
  8. International Organization for Standardization, Information technology: automatic identification and data capture techniques--bar code symbology--data matrix, ISO/IEC 16022 (ISO/IEC, 2000).
  9. International Organization for Standardization, Information technology: automatic identification and data capture techniques--bar code symbology--PDF-417, ISO/IEC 15438 (ISO/IEC, 2001).
  10. International Organization for Standardization, Information technology: automatic identification and data capture techniques--bar code symbology--QR code, ISO/IEC 18004 (ISO/IEC, 2000).
  11. J. Rekimoto, The world through the computer: a new human-computer interaction style based on wearable computers, Technical Report SCSL-TR-94-013, Sony Computer Science Laboratories Inc., Japan, 1994.
  12. J. Rekimoto and Y. Ayatsuka, “Cyber code: designing augmented reality environments with visual tags,” in Proceedings Designing Augmented Reality Environments, W. E. Mackay, ed. (Association for Computing Machinery Press, 2000), pp. 1-10.
  13. P. Milgram and H. Colquhoun, “A taxonomy of real and virtual world displays integration,” in Mixed Reality--Merging Real and Virtual Worlds, Y. Ohta and H. Tamura, eds. (Ohmsha and Springer-Verlag, 1999), pp. 5-30.
  14. J. R. Vallino, “Interactive augmented reality,” Ph D. dissertation (University of Rochester, New York, 1998).
  15. R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” in IEEE Computer Graphics and Applications (IEEE, 2001), pp. 34-47.
  16. A. State, G. Hirota, D. T. Chen, W. F. Garrett, and M. A. Livingston, “Superior augmented reality registration by integrating landmark tracking and magnetic tracking,” in Proceedings of SIGGRAPH, J. Fujii, ed. (Association for Computing Machinery Press, 1996), pp. 429-438.
  17. H. Kato and M. Billinghurst, “Marker tracking and HMD calibration for a video-based augmented reality conferencing system,” in Proceedings of 2nd IEEE and ACM Int. Workshop on Augmented Reality, G. Klinker and T. U. München, eds. (IEEE Computer Society, 1999), pp. 85-94.
  18. H. Shimoda, H. Ishii, M. Maeshima, T. Nakai, Z. Bian, and H. Yoshikawa, “Development of a tracking method for augmented reality applied to nuclear plant maintenance work: (1) barcode marker,” in Proceeding of Halden Project VR Workshop (Halden Project Centre, 2005), http://hydro.energy.kyoto-u.ac.jp/Lab/staff/hirotake/paper/papers/VRWS2005_1.pdf.
  19. S. Sathyanath and F. Sahin, “AISIMAM: an artificial immune system based intelligent multi agent model and its application to a mine detection problem,” in Proceeding of International Centre for Advanced Research in Identification Science, S. Garrett, ed. (University of Kent at Canterbury, 2002), pp. 22-31.
  20. HITLab, “ARToolKit,” http://www.hitl.washington.edu/artoolkit.
  21. M. Fiala, “ARTag, a fiducial marker system using digital techniques,” in Proceedings of IEEE Computer Vision and Pattern Recognition, C.Schmid, S.Soatto, and C.Tomasi, eds. (IEEE Computer Society, 2005), Vol. 2, pp. 590-596.
  22. ColorZip Media, http://www.colorzip.co.jp/en.
  23. J. R. Kaufman and C. Hohberger, “Distortion resistant double-data correcting color transition barcode and method of generating and using same,” U.S. patent 6,070,805 (United States Patent and Trademark Office, 2000).
  24. V. L. Jaume, “Color constancy and image segmentation techniques for applications to mobile robotics,” Doctoral thesis (Universitat Politecnica de Catalunya, 2005).
  25. K. Barnard, V. Cardei, and B. Funt, “A comparison of computational color constancy algorithms-part I: methodology and experiments with synthesized data,” IEEE Trans. Image Process. 11, 972-984 (2002). [CrossRef]
  26. K. Barnard, L. Martin, A. Coath, and B. Funt, “A comparison of computational color constancy algorithms-part II: experiments with image data,” IEEE Trans. Image Process. 11, 985-996 (2002). [CrossRef]
  27. S. D. Hordley and G. D. Finlayson, “Reevaluation of color constancy algorithm performance,” J. Opt. Soc. Am. A 23, 1008-1020 (2006). [CrossRef]
  28. C. Cheong, N.-K. Lee, and T.-D. Han, “Apparatus and method for recognizing code,” U.S. patent 6,981,644 (United States Patent and Trademark Office, 2006).
  29. C. Cheong, D.-C. Kim, and T.-D. Han, “Color classification using quiet zone information for color-based image code recognition,” in Proceeding of First Korea-Japan Joint Workshop on Pattern Recognition, B. -K. Shin and K. Kise, eds. (Korea Information Science Society, Korea and The Institute of Electronics, Information and Communication Engineers, Japan, 2006), pp. 109-114.
  30. M. Ebner, “A parallel algorithm for color constancy,” Technical Report 296 (Universita¨t Wu¨rzburg, Lehrstuhl fu¨r Informatik II, April 2002).
  31. D. A. Brainard and B. A. Wandell, “Analysis of the retinex theory of color vision,” J. Opt. Soc. Am. A 3, 1651-1661 (1986).
  32. R. Gershon, A. D. Jepson, and J. K. Tsotsos, “From [R,G,B] to surface reflectance: computing color constant descriptors in images,” Perception 17, 755-758 (1988).
  33. K. J. Linnell and D. H. Foster, “Space-average scene colour used to extract illuminant information,” in Selected Proceedings of the Int. Conf. John Dalton's Colour Vision Legacy, C. Dickinson, I. Murray, and D. Carden, eds. (Taylor & Francis, 1997), pp. 501-509.
  34. J. J. McCann, S. P. McKee, and T. H. Taylor, “Quantitative studies in Retinex theory,” Vision Res. 16, 445-458 (1976). [CrossRef]
  35. B. K. P. Horn, “Determining lightness from an image,” Comput. Graph. Image Process. 3, 277-299 (1974). [CrossRef]
  36. B. V. Funt, K. Barnard, and L. Martin, “Is colour constancy good enough?,” in Proceedings of Fifth European Conference on Computer Vision, LNCS 1406, H.Burkhardt and B.Neumann, eds. (Springer-Verlag, 1998), pp. 445-459.
  37. C. Balkenius, A. J. Johansson, and A. Balkenius, “Color constancy in visual scene perception,” Lund University Cognitive Studies 98 (2003), http://www.lucs.lu.se/ftp/pub/LUCS_Studies/LUCSinlaga98.pdf.
  38. D. A. Forsyth, “A novel algorithm for color constancy,” Int. J. Comput. Vis. 5, 5-36 (1990). [CrossRef]
  39. G. D. Finlayson, “Color in perspective,” IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 1034-1038(1996). [CrossRef]
  40. G. D. Finlayson and S. D. Hordley, “Improving gamut mapping color constancy,” IEEE Trans. Image Process. 9, 1774-1783(2000). [CrossRef]
  41. D. H. Brainard and W. T. Freeman, “Bayesian color constancy,” J. Opt. Soc. Am. A 14, 1393-1411 (1997). [CrossRef]
  42. E. H. Land, “An alternative technique for the computation of the designator in the Retinex theory of color vision,” Proc. Natl. Acad. Sci. U.S.A. 83, 3078-3080 (1986). [CrossRef]
  43. J. J. McCann, “Magnitude of color shifts from average quanta catch adaptation,” in Proceedings of IS&T/SID Fifth Color Imaging Conf.: Color Science, Systems and Application (The Society for Imaging Science and Technology, 1997), pp. 215-220.
  44. P. M. Hubel and G. Finlayson, “White point estimation using correlation matrix memory,” U.S. patent 6,038,339 (United States Patent and Trademark Office, 2000).
  45. G. Finlayson, S. Hordley, and P. Hubel, “Color by correlation: a simple, unifying framework for color constancy,” IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 1209-1221 (2001). [CrossRef]
  46. V. C. Cardei, B. Funt, and K. Barnard, “Estimating the scene illuminant chromaticity by using a neural network,” J. Opt. Soc. Am. A 19, 2374-2386 (2002). [CrossRef]
  47. M. Ebner, “Evolving color constancy for an artificial retina,” in Genetic Programming: Proceedings of the 4th Europ. Conf., EuroGP 2001, J. Miller, M. Tomassini, P. L. Lanzi, C. Ryan, A. G. B. Tettamanzi, and W. B. Langdon, eds. (Springer-Verlag, 2001), pp. 11-22.
  48. V. C. Cardei and B. Funt, “Committee-based color constancy,” in Proceedings of the IS&T/SID 7th Color Imaging Conference: Color Science, Systems and Applications (The Society for Imaging Science and Technology, 1999), pp. 311-313, http://www.cs.sfu.ca/%7Ecolour/publications/IST-99/IST-99-CBCC.pdf.
  49. M. Ebner, “Combining white-patch retinex and the gray world assumption to achieve color constancy for multiple illuminants,” in Proceedings of the 25th DAGM Symposium on Pattern Recognition, LNCS 2781, B. Michaelis and G. Krell, eds. (Springer-Verlag, 2003), pp. 60-67.
  50. E. H. Land, “The retinex theory of color vision,” Sci. Am. 6, 108-128 (1977).
  51. “Using bar code,” Data Capture Institute, http://www.datacaptureinstitute.com/publications/book.htm.
  52. “2D (two dimensional) bar code symbologies,” Swing Labels, http://www.swinglabels.com/barcodes/symbology/2d.asp.
  53. A. R. Smith, “Color gamut transform pairs,” in Proceedings of the 5th annual conference on Computer graphics and interactive techniques, S. H. Chasen and R. L. Phillips, eds. (Association for Computing Machinery Press, 1978), pp. 12-19.
  54. M. Gardner, “Multivariate statistics: scaling, clustering, and factor analysis,” http://www.ed.utah.edu/edps/CourseMaterials/7570/MS14.
  55. P. Cimiano, A. Hotho, and S. Staab, “Comparing conceptual, divisive and agglomerative clustering for learning taxonomies from text,” in Proceedings of the 16th European Conference on Artificial Intelligence, R. L. Mántaras and L. Saitta, eds. (IOS Press, 2004), pp. 435-439.
  56. E. Gose, R. Johnsonbaugh, and S. Jost, Pattern Recognition and Image Analysis (Prentice Hall, 1996), pp. 338-346.
  57. K. N. Plataniotis and A. N. Venetsanopoulos, Color Image Processing and Application (Springer-Verlag, 2000), pp. 20-25.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited