OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 13 — May. 1, 2008
  • pp: 2382–2385

Measured and simulated performance of a ceramic micromechanical beam steering device at 94 GHz

T. D. Drysdale, E. D. Walsby, and D. R. S. Cumming  »View Author Affiliations


Applied Optics, Vol. 47, Issue 13, pp. 2382-2385 (2008)
http://dx.doi.org/10.1364/AO.47.002382


View Full Text Article

Enhanced HTML    Acrobat PDF (468 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the first experimental demonstration of a transmission-mode micromechanical beam steering device for use in standoff terahertz imaging and spectroscopy. The device was constructed by laminating laser-cut 96% alumina sheets to form two plates with interlocking rectangular gratings of 762 μm period and was characterized at 94 GHz in a free-space measurement setup with an automated elevation scan. Plate tilts as great as 6 ° deflected the transmitted beam by 6 ° for the transverse electric (TE) polarization and by 4 ° for the transverse magnetic polarization. Finite-difference time-domain simulations of the TE performance were in good agreement with the measurements.

© 2008 Optical Society of America

OCIS Codes
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(230.3990) Optical devices : Micro-optical devices
(260.1440) Physical optics : Birefringence
(350.4010) Other areas of optics : Microwaves

ToC Category:
Optical Devices

History
Original Manuscript: October 22, 2007
Revised Manuscript: March 19, 2008
Manuscript Accepted: March 19, 2008
Published: April 28, 2008

Citation
T. D. Drysdale, E. D. Walsby, and D. R. S. Cumming, "Measured and simulated performance of a ceramic micromechanical beam steering device at 94 GHz," Appl. Opt. 47, 2382-2385 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-13-2382


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. H. Austen, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284-286 (1984). [CrossRef]
  2. K. H. Yang, P. L. Richards, and Y. R. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNbO3,” Appl. Phys. Lett. 19, 320-323 (1971). [CrossRef]
  3. I. S. Gregory, W. R. Tribe, M. J. Evans, T. D. Drysdale, D. R. S. Cumming, and M. Missous, “Multi-channel homodyne detection of continuous-wave terahertz radiation,” Appl. Phys. Lett. 87, 034106 (2005). [CrossRef]
  4. B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “3.4 THz quantum cascade laser operating above liquid nitrogen temperature,” Electron. Lett. 39, 915-916 (2003). [CrossRef]
  5. K. J. Linden, W. R. Neal, J. Waldman, A. J. Gatesman, and A.Danylov, “Terahertz laser based standoff imaging system,” in Proceedings. 34th Applied Imagery and Pattern Recognition Workshop (IEEE, 2005), pp 8-15, .
  6. L. Brennan, “Angular accuracy of a phased array radar,” IEEE Trans. Antennas Propag. 9, 268-275 (1961). [CrossRef]
  7. T. S. Kim, S. S. Lee, Y. Yee, J. U. Bu, C. G. Park, and M. H. Ha, “Large tilt angle electrostatic force actuated micro-mirror,” IEEE Photon. Technol. Lett 14, 1569-1571 (2002). [CrossRef]
  8. E. D. Walsby, R. Cheung, R. J. Blaikie, and D. R. S. Cumming, “Fabrication of multilevel silicon diffractive lenses for terahertz frequencies,” Proc. SPIE 387979-87 (1999). [CrossRef]
  9. T. D. Drysdale, R. J. Blaikie, H. M. H. Chong, and D. R. S. Cumming, “Artificial dielectric devices for variable polarization compensation at millimeter and submillimeter wavelengths,” IEEE Trans. Antennas Propag. 513072-3079 (2003). [CrossRef]
  10. D. R. S. Cumming and T. D. Drysdale, “A micro-mechanical beam-steering device for terahertz frequencies,” Opt. Commun. 259, 373-377 (2006). [CrossRef]
  11. T. D. Drysdale, G. Mills, S. M. Ferguson, R. J. Blaikie, and D.R.S. Cumming, “Terahertz tuneable filters made by self-releasing deep dry etch process,” Microelectron. Eng. 73-74, 441446, (2004). [CrossRef]
  12. XFDTD, Remcom Inc., State College, Pa. 16801.
  13. C. A. Balanis, Antenna Theory Analysis and Design (Wiley, 1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited