OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 13 — May. 1, 2008
  • pp: 2392–2398

Gas detection by correlation spectroscopy employing a multimode diode laser

Xiutao Lou, Gabriel Somesfalean, and Zhiguo Zhang  »View Author Affiliations


Applied Optics, Vol. 47, Issue 13, pp. 2392-2398 (2008)
http://dx.doi.org/10.1364/AO.47.002392


View Full Text Article

Enhanced HTML    Acrobat PDF (1802 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A gas sensor based on the gas-correlation technique has been developed using a multimode diode laser (MDL) in a dual-beam detection scheme. Measurement of CO 2 mixed with CO as an interfering gas is successfully demonstrated using a 1570 nm tunable MDL. Despite overlapping absorption spectra and occasional mode hops, the interfering signals can be effectively excluded by a statistical procedure including correlation analysis and outlier identification. The gas concentration is retrieved from several pair-correlated signals by a linear-regression scheme, yielding a reliable and accurate measurement. This demonstrates the utility of the unsophisticated MDLs as novel light sources for gas detection applications.

© 2008 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3600) Lasers and laser optics : Lasers, tunable
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:
Spectroscopy

History
Original Manuscript: December 13, 2007
Revised Manuscript: April 1, 2008
Manuscript Accepted: April 4, 2008
Published: April 28, 2008

Citation
Xiutao Lou, Gabriel Somesfalean, and Zhiguo Zhang, "Gas detection by correlation spectroscopy employing a multimode diode laser," Appl. Opt. 47, 2392-2398 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-13-2392


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. V. Ward and H. H. Zwick, “Gas cell correlation spectrometer: GASPEC,” Appl. Opt. 14, 2896-2904 (1975).
  2. J. Sandsten, H. Edner, and S. Svanberg, “Gas imaging by infrared gas-correlation spectrometry,” Opt. Lett. 21, 1945-1947 (1996).
  3. J. Sandsten, P. Weibring, H. Edner, and S. Svanberg, “Real-time gas-correlation imaging employing thermal background radiation,” Opt. Express 6, 92-103 (2000).
  4. J. Dakin, M. Gunning, P. Chambers, and Z. Xin, “Detection of gases by correlation spectroscopy,” Sens. Actuators B 90, 124-131 (2003).
  5. A. Cheung, W. Johnstone, and D. Moodie, “Gas detection based on optical correlation spectroscopy using a single light source,” Meas. Sci. Technol. 17, 1107-1112 (2006). [CrossRef]
  6. J. P. Dakin, H. O. Edwards, and B. H. Weigl, “Progress with optical gas sensors using correlation spectroscopy,” Sens. Actuators B 29, 87-93 (1995).
  7. G. Somesfalean, M. Sjoholm, L. Persson, H. Gao, T. Svensson, and S. Svanberg, “Temporal correlation scheme for spectroscopic gas analysis using multimode diode lasers,” Appl. Phys. Lett. 86, 184102 (2005). [CrossRef]
  8. C. E. Wieman, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1-20 (1991). [CrossRef]
  9. P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta A 54, 197-236 (1998).
  10. X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B 82, 469-478 (2006).
  11. G. Wysocki, Y. Bakhirkin, S. So, F. K. Tittel, C. J. Hill, R. Q. Yang, and M. P. Fraser, “Dual interband cascade laser based trace-gas sensor for environmental monitoring,” Appl. Opt. 46, 8202-8210 (2007).
  12. J. M. Supplee and E. A. Whittaker, “Theoretical modeling of multimode laser frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 8, 719-725 (1991).
  13. A. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. Viktorov, and P. Mandel, “Dynamics of multimode semiconductor lasers,” Phys. Rev. A 69, 053816 (2004).
  14. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707-717 (1992).
  15. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
  16. P. Werle, B. Scheumann, and J. Schandl, “Real-time signal-processing concepts for trace-gas analysis by diode-laser spectroscopy,” Opt. Eng. 33, 3093-3105 (1994).
  17. C. Roller, A. Fried, J. Walega, P. Weibring, and F. Tittel, “Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde,” Appl. Phys. B 82, 247-264 (2006).
  18. P. Werle, P. Mazzinghi, F. D'Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta A 60, 1685-1705 (2004).
  19. R. Bartlome, M. Baer, and M. W. Sigrist, “High-temperature multipass cell for infrared spectroscopy of heated gases and vapors,” Rev. Sci. Instrum. 78, 013110 (2007). [CrossRef]
  20. C. Dyroff, P. Weibring, A. Fried, D. Richter, J. G. Walega, A. Zahn, W. Freude, and P. Werle, “Stark-enhanced diode-laser spectroscopy of formaldehyde using a modified Herriott-type multipass cell,” Appl. Phys. B 88, 117-123 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited