OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 13 — May. 1, 2008
  • pp: 2430–2436

A sensitive, spatially uniform photodetector for broadband infrared spectrophotometry

Enrique J. Iglesias, Allan W. Smith, and Simon G. Kaplan  »View Author Affiliations


Applied Optics, Vol. 47, Issue 13, pp. 2430-2436 (2008)
http://dx.doi.org/10.1364/AO.47.002430


View Full Text Article

Enhanced HTML    Acrobat PDF (1874 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the design and performance of a liquid helium-cooled As:Si blocked-impurity-band photodetector system intended for spectrophotometry in the thermal infrared (2 to 30 μm ) spectral region. The system has been characterized for spectral sensitivity, noise, thermal stability, and spatial uniformity, and optimized for use with a Fourier-transform infrared spectrophotometer source for absolute goniometric reflectance measurements. Its performance is evaluated and compared to more common detector systems used in this spectral region, including room-temperature pyroelectric and liquid- N 2 -cooled photoconductive devices.

© 2008 Optical Society of America

OCIS Codes
(040.3060) Detectors : Infrared
(040.5160) Detectors : Photodetectors
(120.1840) Instrumentation, measurement, and metrology : Densitometers, reflectometers

ToC Category:
Detectors

History
Original Manuscript: December 3, 2007
Revised Manuscript: March 7, 2008
Manuscript Accepted: March 10, 2008
Published: April 28, 2008

Citation
Enrique J. Iglesias, Allan W. Smith, and Simon G. Kaplan, "A sensitive, spatially uniform photodetector for broadband infrared spectrophotometry," Appl. Opt. 47, 2430-2436 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-13-2430


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Springsteen, “Reflectance spectroscopy: an overview of classification and techniques,” in Applied Spectroscopy: A Compact Reference for Practitioners, J. Workman, Jr., and A. Springsteen, eds. (Academic Press, 1998), pp. 194-224.
  2. S. G. Kaplan and L. M. Hanssen, “Silicon as a standard material for infrared reflectance and transmittance from 2 to 5 μm,” Infrared Phys. Technol. 43, 389-396 (2002). [CrossRef]
  3. S. G. Kaplan and L. M. Hanssen, “Angle-dependent absolute infrared reflectance and transmittance measurements,” Proc. SPIE 4103, 75-84 (2000). [CrossRef]
  4. L. Hanssen, “Integrating-sphere system and method for absolute measurement of transmittance, reflectance, and absorptance of specular samples,” Appl. Opt. 40, 3196-3204 (2001). [CrossRef]
  5. F. Lei and J. Fischer, “Characterization of photodiodes in the UV and visible spectral region based on cryogenic radiometry,” Metrologia 30, 297-303 (1993). [CrossRef]
  6. M. G. White and A. Bittar, “Uniformity of quantum efficiency of single and trap-configured silicon photodiodes,” Metrologia 30, 361-364 (1993). [CrossRef]
  7. T. C. Larason and S. S. Bruce, “Spatial uniformity of responsivity for silicon, gallium nitride, germanium, and indium gallium arsenide photodiodes,” Metrologia 35, 491-496 (1998). [CrossRef]
  8. G. Eppeldauer and M. Racz, “Spectral power and irradiance responsivity calibration of InSb working-standard radiometers,” Appl. Opt. 39, 5739-5744 (2000). [CrossRef]
  9. H. Gong, L. M. Hanssen, and G. P. Eppeldauer, “Spatial and angular responsivity measurements of photoconductive HgCdTe LWIR radiometers,” Metrologia 41, 161-166 (2004). [CrossRef]
  10. N. P. Fox, T. R. Prior, E. Theocharous, and S. N. Mekhontsev, “Solid-state detectors for infrared radiometry,” Metrologia 32, 609-613 (1995). [CrossRef]
  11. A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43, 187-210 (2002). [CrossRef]
  12. G. P. Eppeldauer, A. L. Migdall, and C. L. Cromer, “Characterization of a high sensitivity composite silicon bolometer,” Metrologia 30, 317 (1993). [CrossRef]
  13. A. J. Kreisler and A. Gaugue, “Recent progress in high-temperature superconducting bolometric detectors: from the mid-infrared to the far-infrared (THz) range,” Supercond. Sci. Technol. 13, 1235-1245 (2000). [CrossRef]
  14. Yu. P. Gousev, G. N. Gol'tsman, A. D. Semenov, E. M. Gershenzon, R. S. Nebosis, M. A. Heusinger, and K. F. Renk, “Broadband ultrafast superconducting NbN detector for electromagnetic radiation,” J. Appl. Phys. 75, 3695-3697 (1994). [CrossRef]
  15. R. Sobolewski, A. Verevkin, G. N. Gol'tsman, A. Lipatov, and K. Wilsher, “Ultrafast superconducting single-photon optical detectors and their applications,” IEEE Trans. Appl. Supercond. 13, 1151-1157 (2003). [CrossRef]
  16. The mention of certain trade names in this manuscript is for informational purposes only and not meant to imply endorsement by NIST or that the products described are necessarily the best suited for the purpose.
  17. S. B. Stetson, D. B. Reynolds, M. G. Stapelbroek, and R. L. Stermer, “Design and performance of blocked-impurity-band detector focal plane arrays,” Proc. SPIE 686, 48-65 (1986).
  18. A. C. Carter, S. R. Lorentz, T. M. Jung, B. J. Klemme, and R. U. Datla, “NIST facility for spectral calibration of detectors: calibration of arsenic doped silicon blocked impurity band detectors,” Proc. SPIE 4028, 420 (2000). [CrossRef]
  19. J. Geist, “Infrared absorption cross section of arsenic in silicon in the impurity band region of concentration,” Appl. Opt. 28, 1193-1199 (1989). [CrossRef] [PubMed]
  20. L. M. Hanssen, “Effects of restricting the detector field of view when using integrating spheres,” Appl. Opt. 28, 2097-2103(1989). [CrossRef] [PubMed]
  21. Z. M. Zhang, L. M. Hanssen, and R. U. Datla, “High-optical-density out-of-band spectral transmittance measurements of bandpass filters,” Opt. Lett. 20, 1077-1079 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited