OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 13 — May. 1, 2008
  • pp: 2443–2451

Time exposure performance of Mo–Au Gibbsian segregating alloys for extreme ultraviolet collector optics

Huatan Qiu, Shailendra N. Srivastava, Keith C. Thompson, Martin J. Neumann, and David N. Ruzic  »View Author Affiliations

Applied Optics, Vol. 47, Issue 13, pp. 2443-2451 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (7313 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Successful implementation of extreme ultraviolet (EUV) lithography depends on research and progress toward minimizing collector optics degradation from intense plasma erosion and debris deposition. Thus studying the surface degradation process and implementing innovative methods, which could enhance the surface chemistry causing the mirrors to suffer less damage, is crucial for this technology development. A Mo–Au Gibbsian segregation (GS) alloy is deposited on Si using a dc dual-magnetron cosputtering system and the damage is investigated as a result of time dependent exposure in an EUV source. A thin Au segregating layer is maintained through segregation during exposure, even though overall erosion in the Mo–Au sample is taking place in the bulk. The reflective material, Mo, underneath the segregating layer is protected by this sacrificial layer, which is lost due to preferential sputtering. In addition to theoretical work, experimental results are presented on the effectiveness of the GS alloys to be used as potential EUV collector optics material.

© 2008 Optical Society of America

OCIS Codes
(040.7480) Detectors : X-rays, soft x-rays, extreme ultraviolet (EUV)
(160.4670) Materials : Optical materials

ToC Category:
X-ray Optics

Original Manuscript: October 11, 2007
Revised Manuscript: January 19, 2008
Manuscript Accepted: March 6, 2008
Published: April 28, 2008

Huatan Qiu, Shailendra N. Srivastava, Keith C. Thompson, Martin J. Neumann, and David N. Ruzic, "Time exposure performance of Mo-Au Gibbsian segregating alloys for extreme ultraviolet collector optics," Appl. Opt. 47, 2443-2451 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Stamm, “Extreme ultraviolet light sources for use in semiconductor lithography: state of the art and future development,” J. Phys. D 37, 3244-3253 (2004). [CrossRef]
  2. U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gabel, S. Gotze, A. S. Ivanov, O. B. Khristoforov, D. Klopfel, P. Kohler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High power EUV sources for lithography: a comparison of laser produced plasma and gas discharge produced plasma,” Proc. SPIE 4688, 122-133 (2002). [CrossRef]
  3. V. M. Borisov, A. V. Eltsov, A. S. Ivanov, Y. B. Kiryukhin, O. B. Khristoforov, V. A. Mishchenko, A. V. Prokofiev, A. Y. Vinokhodov, and V. A. Vodchits, “EUV sources using Xe and Sn discharge plasmas,” J. Phys. D 37, 3254-3265 (2004). [CrossRef]
  4. U. Stamm, J. Kleinschmidt, K. Gabel, H. Birner, I. Ahmad, D. Bolshukhin, T. D. Chinh, F. Flohrer, S. Gotze, G. Hergenhan, D. Klopfel, V. Korobotchko, B. Mader, R. Muller, J. Ringling, G. Schriever, and C. Ziener, “High power sources for EUV lithography: state of the art,” Proc. SPIE 5448, 722-736 (2004). [CrossRef]
  5. H. Kinoshita, “History of extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 23, 2584-2588 (2005). [CrossRef]
  6. E. V. Lopez, B. E. Jurczyk, M. A. Jaworski, M. J. Neumann, and D. N. Ruzic, “Origins of debris and mitigation through a secondary RF plasma system for discharge-produced EUV sources,” Microelectron. Eng. 77, 95-102 (2005). [CrossRef]
  7. B. E. Jurczyk, E. V. Lopez, M. J. Neumann, and D. N. Ruzic, “Illinois debris-mitigation EUV applications laboratory,” Microelectron. Eng. 77, 103-109 (2005). [CrossRef]
  8. K. C. Thompson, E. L. Antonsen, M. R. Hendricks, B. E. Jurczyk, M. Williams, and D. N. Ruzic, “Experimental test chamber design for optics exposure testing and debris characterization of a xenon discharge produced plasma source for extreme ultraviolet lithography,” Microelectron. Eng. 83, 476-484 (2006). [CrossRef]
  9. E. L. Antonsen, K. C. Thompson, M. R. Hendricks, D. A. Alman, B. E. Jurczyk, and D. N. Ruzic, “Ion debris characterization from z-pinch extreme ultraviolet light source,” J. Appl. Phys. 99, 063301 (2006). [CrossRef]
  10. H. Qiu, K. C. Thompson, S. N. Srivastava, E. L. Antonsen, D. A. Alman, B. E. Jurczyk, and D. N. Ruzic, “Optical exposure characterization and comparisons for discharge produced plasma Sn extreme ultraviolet system,” J. Micro/Nanolith. MEMS MOEMS 5, 033007 (2006).
  11. D. A. Alman, H. Qiu, T. Spila, K. C. Thompson, E. L. Antonsen, B. E. Jurczyk, and D. N. Ruzic, “Characterization of collector optic material samples exposed to a discharge-produced plasma extreme ultraviolet light source,” J. Micro/Nanolith. MEMS MOEMS 6,013006 (2007). [CrossRef]
  12. S. N. Srivastava, K. C. Thompson, E. L. Antonsen, H. Qiu, J. B. Spencer, D. Papke, and D. N. Ruzic, “Lifetime measurements on collector optics from Xe and Sn extreme ultraviolet sources,” J. Appl. Phys. 102, 023301 (2007). [CrossRef]
  13. H. Qiu, “Gibbsian segregation alloys driven by thermal and concentration gradients--a potential grazing collector optics used in EUV lithography,” Ph.D. dissertation (University of Illinois at Urbana-Champaign, 2007).
  14. P. A. Dowben and A. Miller, Surface Segregation Phenomena (CRC Press, 1990).
  15. D. N. Ruzic, “Origin of debris in EUV sources and its mitigation,” in EUV Sources for Lithography, VivekBakshi, ed. (SPIE Press, 2006), Chap. 36. [CrossRef]
  16. S. Bajt, H. N. Chapman, N. Nguyen, J. Alameda, J. C. Robinson, M. Malinowski, E. Gullikson, A. Aquila, C. Tarrio, and S. Grantham, “Design and performance of capping layers for extreme-ultraviolet multilayer mirrors,” Appl. Opt. 42, 5750-5758 (2003). [CrossRef] [PubMed]
  17. L. Gan, R. D. Gomez, C. J. Powell, R. D. Mcmichael, P. J. Chen, and W. F. Egelhoff, “Thin Al, Au, Cu, Ni, Fe, and Ta films as oxidation barriers for Co in air,” J. Appl. Phys. 93, 8731-8733 (2003). [CrossRef]
  18. S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. B. Alameda, N. Q. Nguyen, S. L. Baker, J. C. Robinson, and J. S. Taylor, “Oxidation resistance and microstructure of ruthenium-capped extreme ultraviolet lithography multilayers,” J. Microlithogr. Microfab. Microsyst. 5, 023004 (2006). [CrossRef]
  19. International Radiation Detectors Inc., Torrance, CA, www.ird-inc.com.
  20. J. F. Ziegler, The Stopping and Range of Ions in Solids (Pergamon, 1985).
  21. J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topology of thick sputtered coatings,” J. Vac. Sci. Technol. 11, 666-670 (1974). [CrossRef]
  22. S. A. Campbell, The Science and Engineering of Microelectronic Fabrication (Oxford U. Press, 2001).
  23. E. Gullikson, http://www-cxro.lbl.gov/optical_constants/.
  24. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50−30000 eV, Z=1−92,” At. Data Nucl. Data Tables , 54, 181-342 (1993). [CrossRef]
  25. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimbukuro, and B. K. Fujikawa, “Low energy X-ray interaction coefficients: photoabsorption, scattering and reflection,” At. Data Nucl. Data Tables 27, 1-144 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited