OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 13 — May. 1, 2008
  • pp: 2452–2457

Optical design of a dynamic focus catheter for high-resolution endoscopic optical coherence tomography

Panomsak Meemon, Kye-Sung Lee, Supraja Murali, and Jannick Rolland  »View Author Affiliations

Applied Optics, Vol. 47, Issue 13, pp. 2452-2457 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (3547 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The optical system design of a dynamic focus endoscopic probe for optical coherence tomography is reported. The dynamic focus capability is based on a liquid lens technology that provides variable focus by changing its curvatures in response to an electric field variation. The effects of a cylindrical exit window present, in practice, for a catheter were accounted for. Degradation in image quality caused by this window was corrected to get diffraction limited imaging performance. As a result, the dynamically focusing catheter with a lateral resolution ranging from 4 to 6 μm through an 5 mm imaging distance was designed without mechanically refocusing the system.

© 2008 Optical Society of America

OCIS Codes
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(220.4830) Optical design and fabrication : Systems design

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: December 19, 2007
Revised Manuscript: March 13, 2008
Manuscript Accepted: March 31, 2008
Published: April 28, 2008

Virtual Issues
Vol. 3, Iss. 6 Virtual Journal for Biomedical Optics

Panomsak Meemon, Kye-Sung Lee, Supraja Murali, and Jannick Rolland, "Optical design of a dynamic focus catheter for high-resolution endoscopic optical coherence tomography," Appl. Opt. 47, 2452-2457 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. H. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J Biomed. Opt. 11, 063001 (2006). [CrossRef]
  3. G. J. Tearney, Department of Pathology, Massachusetts General Hospital, (personal communication, 2007).
  4. G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21, 543-545 (1996). [CrossRef] [PubMed]
  5. P. H. Tran, D. S. Mukai, M. Brenner, and Z. P. Chen, “In vivo endoscopic optical coherence tomography by use of a rotational micro-electromechanical system probe,” Opt. Lett. 29, 1236-1238 (2004). [CrossRef] [PubMed]
  6. P. R. Herz, Y. Chen, A. D. Aguirre, K. Schneider, P. Hsiung, J. G. Fujimoto, K. Madden, J. Schmitt, J. Goodnow, and C. Petersen, “Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2261-2263 (2004). [CrossRef] [PubMed]
  7. K.-S. Lee, A. C. Akcay, T. Delemos, E. Clarkson, and J. P. Rolland, “Dispersion control with a Fourier-domain optical delay line in a fiber-optic imaging interferometer,” Appl. Opt. 44, 4009-4022(2005). [CrossRef] [PubMed]
  8. A. R. Tumlinson, J. K. Barton, J. McNally, A. Unterhuber, B. Hermann, H. Sattman, and W. Drexler, “An achromatized endoscope for ultrahigh-resolution optical coherence tomography,” Proc SPIE 5861, 586110 (2005). [CrossRef]
  9. A. R. Tumlinson, B. Povazay, L. P. Hariri, J. McNally, A. Unterhuber, B. Hermann, H. Sattmann, W. Drexler, and J. K. Barton, “In vivo untrahigh-resolution optical coherence tomography of mouse colon with an achomatized endoscope,” J. Biomed. Opt. 11, 064003-1 (2006). [CrossRef]
  10. S. Murali, K. S. Lee, and J. P. Rolland, “Invariant resolution dynamic focus OCM based on liquid crystal lens,” Opt. Express 15, 15854-15862 (2007). [CrossRef] [PubMed]
  11. T. Xie, S. Guo, and Z. P. Chen, “GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking,” Opt. Express 14, 3238-3246 (2006). [CrossRef] [PubMed]
  12. K. S. Lee, L. Wu, H. Xie, O. Ilegbusi, M. Costa, and J. P. Rolland, “A 5 mm catheter for constant resolution probing in Fourier domain optical coherence endoscopy,” Proc. SPIE , 6432, 64320B (2007). [CrossRef]
  13. The specification can only be obtained directly from Varioptic (www.varioptic.com).
  14. B. Berge, “Liquid lens technology: principle of electrowetting based lenses and applications to imaging,” Proc. of the MEMS 2005, pp. 227-230 (2005).
  15. S. L. Cooper, S. A. Visser, R. W. Hergenrother, and N. M. K. Lamda, “Polymers,” in Biomaterial Science: an Introduction to Material in Medicine, 2nd ed. (Elsevier Academic, 2004), Chap. 2, p. 78.
  16. H. B. Lee, S. S. Kim, and G. Khang, “Polymeric biomaterial,” in The Biomedical Engineering Handbook (CRC Press, in cooperation with the IEEE Press, 1995), Section IV, Chap. 42, p. 588.
  17. J. D. Lytle, “Polymeric optics,” in Handbook of Optics (McGraw-Hill, 1995), Vol. II, Chap. 34, p. 34.7.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited