OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 13 — May. 1, 2008
  • pp: 2458–2464

Observation of nanoparticle internalization on cellular membranes by using noninterferometric widefield optical profilometry

Chun-Chieh Wang, Chia-Wei Lee, Chia-Yun Huang, Jiunn-Yuan Lin, Pei-Kuen Wei, and Chau-Hwang Lee  »View Author Affiliations

Applied Optics, Vol. 47, Issue 13, pp. 2458-2464 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (7835 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the observation of gold-nanoparticle internalization in membranes of living cells by using noninterferometric widefield optical profilometry (NIWOP). The NIWOP technique can trace the height of an 80 nm gold particle on the membrane by calibrating the change of light intensity scattered from the particle along the optical axis. On the membrane, the depth resolution based on the scattering signal is similar to that based on the reflection signal, nearly 20 nm . Comparing the heights of the nanoparticle and the nearby cell membranes, we can identify the occurrence of particle internalization. Combining fluorescence microscopy with NIWOP, we also find actin aggregation around the site of the internalization process, which is an indication of endocytosis.

© 2008 Optical Society of America

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.6900) Microscopy : Three-dimensional microscopy
(290.5850) Scattering : Scattering, particles

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: December 18, 2007
Revised Manuscript: April 2, 2008
Manuscript Accepted: April 2, 2008
Published: April 28, 2008

Virtual Issues
Vol. 3, Iss. 6 Virtual Journal for Biomedical Optics

Chun-Chieh Wang, Chia-Wei Lee, Chia-Yun Huang, Jiunn-Yuan Lin, Pei-Kuen Wei, and Chau-Hwang Lee, "Observation of nanoparticle internalization on cellular membranes by using noninterferometric widefield optical profilometry," Appl. Opt. 47, 2458-2464 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M.-C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293-346 (2004). [CrossRef] [PubMed]
  2. T. Kalkbrenner, U. Hakanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4, 2309-2314 (2004). [CrossRef]
  3. C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949-2951 (2000). [CrossRef]
  4. K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004). [CrossRef] [PubMed]
  5. V. Jacobsen, P. Stoller, C. Brunner, V. Vogel, and V. Sandoghdar, “Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface,” Opt. Express 14, 405-414 (2006). [CrossRef] [PubMed]
  6. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5, 829-834 (2005). [CrossRef] [PubMed]
  7. K. Murase, T. Fujiwara, Y. Umemura, K. Suzuki, R. Iino, H. Yamashita, M. Saito, H. Murakoshi, K. Ritchie, and A. Kusumi, “Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques,” Biophys. J. 86, 4075-4093 (2004). [CrossRef] [PubMed]
  8. J. M. de la Fuente, C. C. Berry, M. O. Riehle, and A. S. G. Curtis, “Nanoparticle targeting at cells,” Langmuir 22, 3286-3293 (2006). [CrossRef] [PubMed]
  9. C. J. Merrifield, “Seeing is believing: imaging actin dynamics at single sites of endocytosis,” Trends Cell Biol. 14, 352-358(2004). [CrossRef] [PubMed]
  10. D. Yarar, C. M. Waterman-Storer, and S. L. Schmid, “A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis,” Mol. Biol. Cell 16, 964-975(2005). [CrossRef]
  11. T. Tsuboi, S. Terakawa, B. A. Scalettar, C. Fantus, J. Roder, and A. Jeromin, “Sweeping model of dynamin activity,” J. Biol. Chem. 277, 15957-15961 (2002). [CrossRef] [PubMed]
  12. H. Kasai, T. Kishimoto, T. Nemoto, H. Hatakeyama, T.-T. Liu, and N. Takahashi, “Two-photon excitation imaging of exocytosis and endocytosis and determination of their spatial organization,” Adv. Drug Delivery Rev. 58, 850-877 (2006). [CrossRef]
  13. H. T. McMahon and J. L. Gallop, “Membrane curvature and mechanisms of dynamic cell membrane remodelling,” Nature (London) 438, 590-596 (2005). [CrossRef]
  14. C.-H. Lee, H.-Y. Mong, and W.-C. Lin, “Noninterferometric wide-field optical profilometry with nanometer depth resolution,” Opt. Lett. 27, 1773-1775 (2002). [CrossRef]
  15. C.-C. Wang, J.-Y. Lin, and C.-H. Lee, “Membrane ripples of a living cell measured by non-interferometric widefield optical profilometry,” Opt. Express 13, 10665-10672 (2005). [CrossRef] [PubMed]
  16. C.-C. Wang, J.-Y. Lin, H.-C. Chen, and C.-H. Lee, “Dynamics of cell membranes and the underlying cytoskeletons observed by non-interferometric widefield optical profilometry and fluorescence microscopy,” Opt. Lett. 31, 2873-2875 (2006). [CrossRef] [PubMed]
  17. Y. Colpin, A. Swan, A. V. Zvyagin, and T. Plakhotnik, “Imaging and sizing of diamond nanoparticles,” Opt. Lett. 31, 625-627(2006). [CrossRef] [PubMed]
  18. E. Smythe and K. R. Ayscough, “Actin regulation in endocytosis,” J. Cell Sci. 119, 4589-4598 (2006). [CrossRef] [PubMed]
  19. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905-1907 (1997). [CrossRef]
  20. C.-H. Lee and J. Wang, “Noninterferometric differential confocal microscopy with 2 nm depth resolution,” Opt. Commun. 135, 233-237 (1997). [CrossRef]
  21. H. Tomoda, Y. Kishimoto, and Y. C. Lee, “Temperature effect on endocytosis and exocytosis by rabbit alveolar macrophages,” J. Biol. Chem. 264, 15445-15450 (1989). [PubMed]
  22. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  23. L. J. Kleinsmith and V. M. Kish, Principles of Cell and Molecular Biology (Harpercollins College, 1995), Chap. 7.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited