OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 13 — May. 1, 2008
  • pp: 2470–2476

Electric field and temperature measurement using ultra wide bandwidth pigtailed electro-optic probes

Maxime Bernier, Gwenaël Gaborit, Lionel Duvillaret, Alain Paupert, and Jean-Louis Lasserre  »View Author Affiliations


Applied Optics, Vol. 47, Issue 13, pp. 2470-2476 (2008)
http://dx.doi.org/10.1364/AO.47.002470


View Full Text Article

Enhanced HTML    Acrobat PDF (2626 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present pigtailed electro-optic probes that allow a simultaneous measurement of high frequency electric fields and temperature using a unique laser probe beam. This has been achieved by the development of a novel probe design associated with a fully automated servo-controlled optical bench, initially developed to stabilize the electric field sensor response. The developed electro-optic probes present a stable response in outdoors conditions over a time duration exceeding 1 h , a frequency bandwidth from kHz to tens of GHz with a sensitivity of 0.7 V m 1 Hz 1 / 2 , and a temperature accuracy of 40 mK .

© 2008 Optical Society of America

OCIS Codes
(260.1440) Physical optics : Birefringence
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.3420) Remote sensing and sensors : Laser sensors
(280.6780) Remote sensing and sensors : Temperature

ToC Category:
Remote sensing and sensors

History
Original Manuscript: December 12, 2007
Revised Manuscript: April 10, 2008
Manuscript Accepted: April 11, 2008
Published: April 29, 2008

Citation
Maxime Bernier, Gwenaël Gaborit, Lionel Duvillaret, Alain Paupert, and Jean-Louis Lasserre, "Electric field and temperature measurement using ultra wide bandwidth pigtailed electro-optic probes," Appl. Opt. 47, 2470-2476 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-13-2470


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. D. Prather, C. E. Baum, R. J. Torres, F. Sabath, and D. Nitsch, “Survey of worldwide high-power wideband capabilities,” IEEE Trans. Electromag. Compat. 46, 335-344 (2004). [CrossRef]
  2. S. Wakana, T. Ohara, M. Abe, E. Yamazaki, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microwave Theory Tech. 48, 2611-2616 (2000). [CrossRef]
  3. G. Zheng, J. Xu, L. Chen, H. Wang, and W. She, “Athermal design for the potassium titanyl phosphate electro-optical modulator,” Appl. Opt. 46, 6774-6778 (2007). [CrossRef] [PubMed]
  4. R. Forber, W. C. Wang, D.-Y. Zang, S. Schultz, and R. Selfridge, “Dielectric EM field probes for HPM test & evaluation,” presented at the Annual ITEA Technology Review, Cambridge, United Kingdom, 7-10 August 2007.
  5. M.-S. Huang, M.-H. Lu, and J.-T. Shy, “High sensitivity bulk electro-optic modulator field sensor for high voltage environments,” Rev. Sci. Instrum. 75, 5364-5366 (2004). [CrossRef]
  6. V. N. Filippov, A. N. Starodumov, Y. O. Barmenkov, and V. V. Makarov, “Fiber-optic voltage sensor based on a Bi12TiO20 crystal,” Appl. Opt. 9, 1389-1393 (2000). [CrossRef]
  7. R. Claverie, J.-P. Salvestrini, and M. D. Fontana, “New electro-optic sensor architecture for temperature measurements,” presented at the Instrumentation and Measurement Technology Conference, Warsaw, Poland, 1-3 May 2007.
  8. B. Mellouet, L. Velasco, and J. Achkar, “Fast method applied to the measurement of microwave power standards,” IEEE Trans. Instrum. Meas. 50, 381-384 (2001). [CrossRef]
  9. G. C. Baldwin, An Introduction to Non Linear Optics (Plenum, 1969). [CrossRef]
  10. B. H. Kolner and D. M. Bloom, “Electro-optic sampling in GaAs integrated circuits,” IEEE J. Quantum Electron. 22, 79-93 (1986). [CrossRef]
  11. K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electro-optic field mapping system utilizing external gallium arsenide probes,” Appl. Phys. Lett. 77, 486-488 (2000). [CrossRef]
  12. L. Levi, Applied Optics (Wiley & Sons, 1980), Vol. 2.
  13. R. B. Dyott, Elliptical Fiber Waveguides (Artech House, 1995).
  14. L. Duvillaret, S. Rialland, and J.-L. Coutaz, “Electro-optic sensors for electric-field measurements. I. Theoretical comparison among different modulation techniques,” J. Opt. Soc. Am. B 19, 2692-2703 (2002). [CrossRef]
  15. L. Duvillaret, S. Rialland, and J.-L. Coutaz, “Electro-optic sensors for electric-field measurements. II. Choice of the crystals and complete optimization of their orientation,” J. Opt. Soc. Am. B 19, 2704-2715 (2002). [CrossRef]
  16. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, 1991). [CrossRef]
  17. L. Duvillaret and G. Gaborit, “Sonde électro-optique de mesure de température et de champ électromagnétique,” French patent deposit 06-52156 (2006).
  18. G. Gaborit, J.-L. Coutaz, and L. Duvillaret, “Vectorial electric field measurement using isotropic electro-optic crystals,” Appl. Phys. Lett. 90, 241118 (2007). [CrossRef]
  19. K. S. Abedin and H. Ito, “Temperature-dependent dispersion relation of ferroelectric lithium tantalate,” J. Appl. Phys. 80, 6561-6563 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited