OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 13 — May. 1, 2008
  • pp: 2510–2519

Tomographic imaging of airglow from airborne spectroscopic measurements

D. Scott Anderson, Gary Swenson, Farzad Kamalabadi, and Alan Liu  »View Author Affiliations

Applied Optics, Vol. 47, Issue 13, pp. 2510-2519 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2619 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A description is given of the methodology based on a single, aircraft-mounted spectroscopic imager to tomographically reconstruct airglow perturbations induced by atmospheric gravity waves. In this configuration, the imager passes under the airglow structure to gather multiple-angle views of the wave structure in a relatively short amount of time. Under the assumption that the airglow structure does not change significantly during the acquisition interval, the data can be tomographically inverted to estimate the 2D (horizontal–vertical) airglow structure. We develop an inversion strategy for this image formation task and illustrate its applicability by inverting time-sequential imaging data taken from different vantage points during the ALOHA-93 campaign to reconstruct atmospheric gravity wave structures.

© 2008 Optical Society of America

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(100.3010) Image processing : Image reconstruction techniques
(280.4991) Remote sensing and sensors : Passive remote sensing
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and oceanic optics

Original Manuscript: October 24, 2007
Revised Manuscript: February 1, 2008
Manuscript Accepted: March 20, 2008
Published: April 30, 2008

D. Scott Anderson, Gary Swenson, Farzad Kamalabadi, and Alan Liu, "Tomographic imaging of airglow from airborne spectroscopic measurements," Appl. Opt. 47, 2510-2519 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. O. Hines, “Internal atmospheric gravity waves at ionospheric heights,” Can. J. Phys. 38, 1441-1481 (1960). [CrossRef]
  2. J. R. Holton, “The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere,” J. Atmos. Sci. 39, 791-799 (1982). [CrossRef]
  3. R. A. Vincent, “Gravity-wave motions in the mesosphere,” J. Atmos. Terr. Phys. 46, 119-128 (1984). [CrossRef]
  4. A. Z. Liu and G. R. Swenson, “A modeling study of O2 and OH airglow perturbations induced by atmospheric gravity waves,” J. Geophys. Res. 108, ACH 11-1 (2003).. [CrossRef]
  5. G. Swenson, J. Tang, F. Kamalabadi, and S. Frank, “Methods of deducing intrinsic measurements of high frequency Atmospheric Gravity Waves (AGWs),” in Proc. SPIE 5979, 59790V(2005). [CrossRef]
  6. M. J. Taylor, D. C. Fritts, and J. R. Isler, “Determination of horizontal and vertical structure of an unusual pattern of short-period gravity waves imaged during ALOHA-93,” Geophys. Res. Lett. 22, 2837-2840 (1995). [CrossRef]
  7. J. Tang, G. R. Swenson, A. Z. Liu, and F. Kamalabadi, “Observational investigations of gravity wave momentum flux with spectroscopic imaging,” J. Geophys. Res. [Atmos.] 110 (2005). [CrossRef]
  8. G. R. Swenson and C. S. Gardner, “Analytic models for the responses of the mesospheric OH* and Na layers to atmospheric gravity waves,” J. Geophys. Res. 103, 6271-6294 (1998). [CrossRef]
  9. F. Vargas, G. R. Swenson, A. Z. Liu, and D. Gobbi, “O(1S), OH, and O2(b) airglow layer perturbations due to AGWs and their implied effects on the atmosphere,” J. Geophys. Res. [Atmos.] 112 (2007). [CrossRef]
  10. J. R. Austen, S. J. Franke, C. H. Liu, and K. C. Yeh, “Application of computerized tomography techniques to ionospheric research,” in International Beacon Satellite Symposium on Radio Beacon Contribution to the Study of Ionization and Dynamics of the Ionosphere and to Corrections to Geodesy and Technical Workshop, Proceedings. Part 1, A. Taurianinen, ed. (International Union of Radio Science, 1986), pp. 25-35.
  11. J. R. Austen, S. J. Franke, and C. H. Liu, “Ionospheric imaging using computerized tomography,” Radio Sci. 23, 299-307(1988). [CrossRef]
  12. G. C. Fehmers, L. P. J. Kamp, F. W. Sluijter, and T. A. T. Spoelstra, “A model-independent algorithm for ionospheric tomography 1. Theory and tests,” Radio Sci. 33, 149-163 (1998). [CrossRef]
  13. G. C. Fehmers, L. P. J. Kamp, F. W. Sluijter, and T. A. Spoelstra, “A model-independent algorithm for ionospheric tomography 2. Experimental results,” Radio Sci. 33, 165-173 (1998). [CrossRef]
  14. J. Semeter and F. Kamalabadi, “A natural pixel decomposition for tomographic imaging of the ionosphere,” Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, 1998 (IEEE Signal Processing Society, 1998), vol. 5, pp. 2913-2916.
  15. T. Nygren, M. Markkanen, M. Lehtinen, M. Tereshenko, and B. Z. Khudukon, “Stochastic inversion in ionospheric radiotomography,” Radio Sci. 32, 2359-2372 (1997). [CrossRef]
  16. G. R. Swenson, R. L. Rairden, S. C. Solomon, and S. Ananth, “Instrument for the monochromatic observation of all sky auroral images,” Appl. Opt. 37, 5760-5770 (1998). [CrossRef]
  17. F. Kamalabadi, W. C. Karl, J. L. Semeter, D. M. Cotton, T. A. Cook, and S. Chakrabarti, “A statistical framework for space-based EUV ionospheric tomography,” Radio Sci. 34, 437-447(1999). [CrossRef]
  18. F. Kamalabadi, G. Bust, K. Dymond, S. Gonzalez, P. Bernhardt, S. Chakrabarti, D. Cotton, A. Stephan, R. McCoy, S. Budzien, and S. Thonnard, “Tomographic studies of aeronomic phenomena using radio and UV techniques,” J. Atmos. Sol.-Terr. Phys. 64, 1573-1580 (2002). [CrossRef]
  19. S. Frey, H. U. Frey, D. J. Carr, O. H. Bauer, and G. Haerendel, “Auroral emission profiles extracted from three-dimensionally reconstructed arcs,” J. Geophys. Res. 101, 21,731-21,741(1996). [CrossRef]
  20. S. Frey, S. B. Mende, and H. U. Frey, “Satellite limb tomography applied to airglow of the 630 nm emission,” J. Geophys. Res. 106, 21367-21380 (2001). [CrossRef]
  21. J. Semeter and M. Mendillo, “Nonlinear optimization technique for ground-based atmospheric emission tomography,” IEEE Trans. Geosci. Remote Sens. 35, 1105-1116 (1997). [CrossRef]
  22. R. A. Doe, J. D. Kelly, J. L. Semeter, and D. P. Steele, “Tomographic reconstruction of 630.0 nm emission structure for a polar cap arc,” Geophys. Res. Lett. 24, 1119-1122 (1997). [CrossRef]
  23. T. Nygren, M. J. Taylor, M. S. Lehtinen, and M. Markkanen, “Application of tomographic inversion in studying airglow in the mesopause region,” Ann. Geophys. 16, 1180-1189 (1998). [CrossRef]
  24. T. Nygren, M. J. Taylor, G. R. Swenson, and M. S. Lehtinen, “Observing gravity wave activity in the mesopause region by means of airglow tomography,” Adv. Space Res. 26, 903-906(2000). [CrossRef]
  25. G. R. Swenson, J. Qian, J. M. C. Plane, P. Espy, M. J. Taylor, D. N. Turnbull, and R. P. Lowe, “Dynamical and chemical aspects of the mesospheric Na 'wall' event on October 9, 1993 during the Airborne Lidar and Observations of Hawaiian Airglow (ALOHA) campaign,” J. Geophys. Res. 103, 6361-6380(1998). [CrossRef]
  26. R. Nikoukar, G. Swenson, A. Z. Liu, and F. Kamalabadi, “On the variability of mesospheric OH emission profiles,” J. Geophys. Res. 112 (2007). [CrossRef]
  27. J. W. Chamberlain, Physics of the Aurora and Airglow (American Geophysics Union, 1995). [CrossRef]
  28. W. C. Karl, “Regularization in image restoration,” in Handbook of Image and Video Processing A. Bovik, ed. (Academic, 2000), pp. 141-160.
  29. “Special Section: ALOHA/ANLC-93,” J. Geophys. Res. 103, 6249-6481 (1998).
  30. S. B. Mende, R. H. Eather, and E. K. Aamodt, “Instrument for the monochromatic observation of all sky auroral images,” Appl. Opt. 16, 1691-1700 (1977). [CrossRef] [PubMed]
  31. G. R. Swenson and P. J. Espy, “Observations of 2-dimensional airglow structure and Na density from the ALOHA, October 9, 1993 'storm flight',” Geophys. Res. Lett. 22, 2845-2848(1995). [CrossRef]
  32. G. R. Swenson, M. J. Alexander, and R. Haque, “Dispersion imposed limits on atmospheric gravity waves in the mesosphere: observations of OH airglow,” Geophys. Res. Lett. 27, 875-878 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited