OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 13 — May. 1, 2008
  • pp: 2520–2523

Curvature sensor using a highly birefringent photonic crystal fiber with two asymmetric hole regions in a Sagnac interferometer

Orlando Frazão, José M. Baptista, José L. Santos, and Philippe Roy  »View Author Affiliations

Applied Optics, Vol. 47, Issue 13, pp. 2520-2523 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1832 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A curvature sensor based on a highly birefringent (Hi-Bi) photonic crystal fiber inserted into a Sagnac interferometer is demonstrated. For this purpose, a novel Hi-Bi photonic crystal fiber was designed and fabricated. Half of the microstructured region of the photonic crystal fiber was composed by large diameter holes, while the other half contained small diameter holes. Because of this geometry, the fiber core was shifted from the center and high birefringence appears in the optical fiber. Curvature was applied for three different fiber directions for a range of 0.6 5 m 1 . Temperature and longitudinal strain was also characterized for constant curvature. The configuration showed insensitivity to these two physical parameters.

© 2008 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 22, 2008
Revised Manuscript: March 29, 2008
Manuscript Accepted: March 30, 2008
Published: April 30, 2008

Orlando Frazão, José M. Baptista, José L. Santos, and Philippe Roy, "Curvature sensor using a highly birefringent photonic crystal fiber with two asymmetric hole regions in a Sagnac interferometer," Appl. Opt. 47, 2520-2523 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y-S. Yu, Z-Y. Zhao, Z-C. Zhuo, W. Zheng, Y. Qian, and Y-S. Zhang, “Bend sensor using an embedded etched fiber Bragg grating,” Microwave Opt. Technol. Lett. 43, 414-417 (2004). [CrossRef]
  2. F. M. Araújo, L. A. Ferreira, J. L. Santos, and F. Farahi, “Temperature and strain insensitive bending measurements with D-type fiber Bragg gratings,” Meas. Sci. Technol. 12, 829-833 (2001). [CrossRef]
  3. M. J. Gander, W. N. Macpherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fiber,” Electron. Lett. 36, 120-121 (2000). [CrossRef]
  4. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692-694 (1996). [CrossRef] [PubMed]
  5. O. Frazão, F. M. Araújo, L. A. Ferreira, and J. L. Santos, “Applications of fiber optic grating technology to multi-parameter measurement,” Fiber Integr. Opt. 24, 227-244 (2005). [CrossRef]
  6. O. Lisbôa and C. K. Jen, “An optical-fiber bending sensor using two-mode fibers with an off-center core,” Smart Mater. Struct. 3, 164-170 (1994). [CrossRef]
  7. C. E. Covington, J. Blake, and S. L. A. Carrara, “Two-mode fiber-optic bending sensor with temperature and strain compensation,” Opt. Lett. 19, 676-678 (1994). [CrossRef] [PubMed]
  8. W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely address optical fiber curvature sensor using multicore photonic crystal fiber,” Opt. Commun. 193, 97-104 (2001). [CrossRef]
  9. P. M. Blanchard, J. G. Burnett, G. R. G. Erry, A. H. Greenaway, P. Harrison, B. Mangan, J. C. Knight, P. St. J. Russell, M. J. Gander, R. McBride, and J. D. C. Jones, “Two-dimensional bend sensing with a single, multicore optical fiber,” Smart Mater. Struct. 9, 132-140 (2000). [CrossRef]
  10. M. Campbell, G. Zheng, A. S. Holmes-Smith, and P. A. Wallace, “A frequency-modulated continuous wave birefringent fiber optic stain based on a Sagnac ring configuration,” Meas. Sci. Technol. 10, 218-224 (1999). [CrossRef]
  11. A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. De la Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70, 19-21 (1997). [CrossRef]
  12. Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt. 44, 2382-2390 (2005). [CrossRef] [PubMed]
  13. O. Frazão, J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a Hi-Bi photonic crystal fiber loop mirror,” IEEE J Sensors 7, 1453-1455 (2007). [CrossRef]
  14. W. Du, H.-Y. Tam, M. S.Y. Liu, and X. Tao, “Long-period fiber grating bending sensors in laminated composite structures,” Proc. SPIE 3330, 284-292 (1998). [CrossRef]
  15. D. Kim and J. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Express 12, 4490-4495 (2004). [CrossRef] [PubMed]
  16. A. Michie, J. Canning, K. Lyytikäinen, M. Åslund, and J. Digweed, “Temperature independent highly birefringent photonic crystal fiber,” Opt. Express 12, 5160-5165 (2004). [CrossRef] [PubMed]
  17. T. Ritari, H. Ludvigsen, M. Wegmuller, M. Legré, N. Gisin, J. Folkenberg, and M. Nielsen, “Experimental study of polarization properties of highly birefringent photonic crystal fibers,” Opt. Express 12, 5931-5939 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited