OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 13 — May. 1, 2008
  • pp: 2524–2532

Measurement of photoresist grating profiles based on multiwavelength scatterometry and artificial neural network

Shiming Wei and Lifeng Li  »View Author Affiliations

Applied Optics, Vol. 47, Issue 13, pp. 2524-2532 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2860 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We employed a grating profile measurement method, which is based on the combination of multiwavelength scatterometry and artificial neural network, to determine the critical dimensions of submicrometer-period photoresist gratings with wavy sidewall profiles. Six laser beams in three wavelengths and two orthogonal polarizations were adopted for the scatterometry measurement, and the incident angle of each beam was chosen following principles that we propose for achieving high sensitivity. We measured diffraction efficiencies of a large number of photoresist gratings made on glass substrates and high- reflectivity multilayer substrates coated with a chromium thin-film layer, and determined the grating groove parameters using a neural network model. The experimental results are statistically compared with results extracted from scanning electron micrographs. Good agreements between the indirect, neural network predicted results and the direct, scanning electron microscopy results are obtained.

© 2008 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(100.3190) Image processing : Inverse problems
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing

ToC Category:
Diffraction and Gratings

Original Manuscript: November 26, 2007
Revised Manuscript: March 8, 2008
Manuscript Accepted: March 21, 2008
Published: April 30, 2008

Shiming Wei and Lifeng Li, "Measurement of photoresist grating profiles based on multiwavelength scatterometry and artificial neural network," Appl. Opt. 47, 2524-2532 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Garnaes, P. E. Hansen, N. Agersnap, J. Holm, F. Borsetto, and A. Kühle, “Profiles of a high-aspect-ratio grating determined by spectroscopic scatterometry and atomic-force microscopy,” Appl. Opt. 45, 3201-3212 (2006). [CrossRef]
  2. X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, “Specular spectroscopic scatterometry,” IEEE Trans. Semicond. Manuf. 14, 97-111 (2001). [CrossRef]
  3. R. Antos, J. Pistora, I. Ohlidal, K. Postava, J. Mistrik, T. Yamaguchi, S. Visnovsky, and M. Horie, “Specular spectroscopic ellipsometry for the critical dimension monitoring of gratings fabricated on a thick transparent plate,” J. Appl. Phys. 97, 053107 (2005). [CrossRef]
  4. H. Huang and F. L. Terry, “Spectroscopic ellipsometry and reflectometry from gratings (scatterometry) for critical dimension measurement and in situ, real-time process monitoring,” Thin Solid Films 455, 828-836 (2004). [CrossRef]
  5. C. J. Raymond, M. R. Murnane, S. S. H. Naqvi, and J. R. McNeil, “Metrology of subwavelength photoresist gratings using optical scatterometry,” J. Vac. Sci. Technol. B 13, 1484-1495 (1995). [CrossRef]
  6. J. Hazart, G. Grand, P. Thony, D. Hérisson, S. Garcia, and O. Lartigue, “Spectroscopic ellipsometry scatterometry: source of errors in critical dimension control,” Proc. SPIE 5041, 9-20 (2003).
  7. G. Bao, “A uniqueness theorem for an inverse problem in periodic diffractive optics,” Inverse Probl. 10, 335-340 (1994). [CrossRef]
  8. H. Gross and A. Rathsfeld, “Sensitivity analysis for indirect measurement in scatterometry and the reconstruction of periodic grating structures,” WIAS preprint No. 1164 (2006), http://www.wias-berlin.de.
  9. H. Gross, A. Rathsfeld, F. Scholze, M. Bar, and U. Dersch, “Optimal sets of measurement data for profile reconstruction in scatterometry,” Proc. SPIE 6617, 66171B (2007).
  10. R. H. Krukar, S. L. Prins, D. M. Krukar, G. A. Petersen, S. M. Gaspar, J. R. McNeil, S. S. H. Naqvi, and D. R. Hush, “Using scattered light modeling for semiconductor critical dimension metrology and calibration,” Proc. SPIE 1926, 60-71 (1993).
  11. I. Kallioniemi, J. Saarinen, and E. Oja, “Optical scatterometry of subwavelength diffraction gratings: neural-network approach,” Appl. Opt. 37, 5830-5835 (1998).
  12. S. Robert, A. M. Ravaud, S. Reynaud, S. Fourment, F. Carcenac, and P. Arguel, “Experimental characterization of subwavelength diffraction gratings by an inverse-scattering neural method,” J. Opt. Soc. Am. A 19, 2394-2402 (2002) [CrossRef]
  13. I. Kallioniemi, J. Saarinen, and E. Oja, “Characterization of diffraction gratings in a rigorous domain with optical scatterometry: hierarchical neural-network model,” Appl. Opt. 38, 5920-5930 (1999).
  14. S. Robert, A. M. Ravaud, and D. Lacour, “Characterization of optical diffraction gratings by use of a neural method,” J. Opt. Soc. Am. A 19, 24-32 (2002). [CrossRef]
  15. S. Robert, A. M. Ravaud, S. Thiria, M. Yacoub, and F. Badran, “Neural selection of the optimal optical signature for a rapid characterization of a submicrometer period grating,” Opt. Commun. 238, 215-228 (2004). [CrossRef]
  16. I. Gereige, S. Robert, G. Granet, D. Jamon, and J.-J. Rousseau, “Rapid control of submicrometer periodic structures by a neural inversion from ellipsometric measurement,” Opt. Commun. 278, 270-273 (2007). [CrossRef]
  17. L. Li, M. Xu, G. I. Stegeman, and C. T. Seaton, “Fabrication of photoresist masks for sub-micrometer surface relief gratings,” Proc. SPIE 835, 72-82 (1988).
  18. M. Neviere and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design (Marcel Dekker, 2003).
  19. S. T. Peng, T. Tamir, and H. L. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Trans. Microwave Theory Tech. 23, 123-133 (1975). [CrossRef]
  20. S. Haykin, Neural Networks--A Comprehensive Foundation, 2nd ed. (Prentice-Hall, 1999).
  21. M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the marquardt algorithm,” IEEE Trans. Neural Netw. 5, 989-993 (1994).
  22. S. Robert, A. Mure-Rauvaud, S. Thiria, and F. Badran, “Estimation of local error by a neural model in an inverse scattering problem,” Eur. Phys. J. Appl. Phys. 31, 71-76(2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited