OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 14 — May. 10, 2008
  • pp: 2550–2556

Application of an interferometric phase contrast method to fabricate arbitrary diffractive optical elements

Marcel Teschke, Robert Heyer, Marco Fritzsche, Sebastian Stoebenau, and Stefan Sinzinger  »View Author Affiliations


Applied Optics, Vol. 47, Issue 14, pp. 2550-2556 (2008)
http://dx.doi.org/10.1364/AO.47.002550


View Full Text Article

Enhanced HTML    Acrobat PDF (5970 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel approach for the fabrication of diffractive optical elements is described. This approach is based on an interferometric phase contrast method that transforms a complex object wavefront into an intensity pattern. The resulting intensity pattern is used to expose a photoresist layer on a substrate. After development, a diffractive phase object with an on-axis diffraction pattern is achieved. We show that the interferometric phase contrast method allows a precise control of the resulting intensity pattern. An array of blazed Fresnel lenses is realized in photoresist by using kinoform or detour-phase computer holograms for the interferometric phase contrast setup.

© 2008 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(100.5070) Image processing : Phase retrieval
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: January 30, 2008
Revised Manuscript: March 28, 2008
Manuscript Accepted: April 10, 2008
Published: May 2, 2008

Citation
Marcel Teschke, Robert Heyer, Marco Fritzsche, Sebastian Stoebenau, and Stefan Sinzinger, "Application of an interferometric phase contrast method to fabricate arbitrary diffractive optical elements," Appl. Opt. 47, 2550-2556 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-14-2550


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Sinzinger and J. Jahns, Microoptics (Wiley-VCH, 2003). [CrossRef]
  2. R. Brunner, R. Steiner, H. J. Dobschal, and K. Rudolf, “Hybrid diffractive-refractive optics: opportunities and technologies to realize complex optical imaging systems,” Glass Sci. Technol. 76, 91-96 (2003).
  3. R. Brunner, R. Steiner, H. J. Dobschal, D. Martin, M. Burkhardt, and M. Helgert, “Universal grating design for pulse stretching and compression in the 800-1100 nm range,” Proc. SPIE 5183, 47-55 (2003). [CrossRef]
  4. W. W. Ng, C. S. Hong, and A. Yariv, “Holographic interference lithography for integrated optics,” IEEE Trans. Electron Devices 25, 1193-1200 (1978) [CrossRef]
  5. J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, 1997).
  6. J. A. Britten, M. D. Perry, B. W. Shore, and R. D. Boyd, “Universal grating design for pulse stretching and compression in the 800-1100 nm range,” Opt. Lett. 21, 540-542 (1996) [CrossRef] [PubMed]
  7. A. Fernandez, H. T. Nguyen, J. A. Britten, R. D. Boyd, M. D. Perry, D. R. Kania, and A. M. Hawryluk, “Use of interference lithography to pattern arrays of submicron resist structures for field emission flat panel displays,” J. Vac. Sci. Technol. B, Microelectron. Nanometer Struct. Process. Meas. Phenom. 15, 729-735 (1997). [CrossRef]
  8. M. Teschke and S. Sinzinger, “Modified phase contrast for recording of holographic optical elements,” Opt. Lett. 32, 2067-2069 (2007). [CrossRef] [PubMed]
  9. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  10. F. Zernike, “How I discovered phase contrast,” Science 121, 345-349 (1955). [CrossRef] [PubMed]
  11. D. Malacara, Optical Shop Testing (Wiley-VCH, 1992).
  12. W. Lauterborn, T. Kurz, and M. Wiesenfeldt, Kohärente Optik (Springer-Verlag, 1993). [CrossRef]
  13. J. Glückstad and P. C. Mogensen, “Optimal phase contrast imaging in common path interferometry,” Appl. Opt. 40, 268-282 (2001). [CrossRef]
  14. S. Osten, S. Krüger, and A. Steinhoff, “Spatial light modulators based on reflective microdisplays,” Technisches Messen 73, 149-156 (2006). [CrossRef]
  15. Allresist GmbH, http://www.allresist.de.
  16. M. Hofmann, S. Stoebenau, and S. Leopold, Department of Optical Engineering, Technische Universität Ilmenau, P.O. Box 10 05 65, 98684 Ilmenau, Germany, are preparing a manuscript to be called “Characterization of a photoresist for analog lithography in the visible range.”
  17. S. Krüger, S. Osten, and G. Wernicke, “Reflective spatial light modulators improve digital holography,” http://www.holoeye.com/publications1.html.
  18. B. R. Brown and A. W. Lohmann, “Complex spatial filtering with binary masks,” Appl. Opt. 5, 967-969 (1966). [CrossRef] [PubMed]
  19. A. W. Lohmann and S. Sinzinger, “Graphic codes for computer holography,” Appl. Opt. 34, 3172-3178 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited