OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 14 — May. 10, 2008
  • pp: 2564–2573

Frequency domain photothermoacoustic signal amplitude dependence on the optical properties of water: turbid polyvinyl chloride-plastisol system

Gloria M. Spirou, Andreas Mandelis, I. Alex Vitkin, and William M. Whelan  »View Author Affiliations


Applied Optics, Vol. 47, Issue 14, pp. 2564-2573 (2008)
http://dx.doi.org/10.1364/AO.47.002564


View Full Text Article

Enhanced HTML    Acrobat PDF (1168 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photoacoustic (more precisely, photothermoacoustic) signals generated by the absorption of photons can be related to the incident laser fluence rate. The dependence of frequency domain photoacoustic (FD-PA) signals on the optical absorption coefficient ( μ a ) and the effective attenuation coefficient ( μ eff ) of a turbid medium [polyvinyl chloride-plastisol (PVCP)] with tissuelike optical properties was measured, and empirical relationships between these optical properties and the photoacoustic (PA) signal amplitude and the laser fluence rate were derived for the water (PVCP system with and without optical scatterers). The measured relationships between these sample optical properties and the PA signal amplitude were found to be linear, consistent with FD-PA theory: μ a = a ( A / Φ ) b and μ eff = c ( A / Φ ) + d , where Φ is the laser fluence, A is the FD-PA amplitude, and a , , d are empirical coefficients determined from the experiment using linear frequency-swept modulation and a lock-in heterodyne detection technique. This quantitative technique can easily be used to measure the optical properties of general turbid media using FD-PAs.

© 2008 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(110.5125) Imaging systems : Photoacoustics

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: December 18, 2007
Revised Manuscript: April 4, 2008
Manuscript Accepted: April 5, 2008
Published: May 2, 2008

Virtual Issues
Vol. 3, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Gloria M. Spirou, Andreas Mandelis, I. Alex Vitkin, and William M. Whelan, "Frequency domain photothermoacoustic signal amplitude dependence on the optical properties of water: turbid polyvinyl chloride-plastisol system," Appl. Opt. 47, 2564-2573 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-14-2564


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. A. Oraevsky and A. A. Karabutov, “Optoacoustic tomography,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC Press, 2003), pp. 34.1-34.34.
  2. A. A. Karabutov and A. A. Oraevsky, “Time-resolved detection of optoacoustic profiles for measurement of optical energy distribution in tissues,” in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, ed. (SPIE, 2002), pp. 587-646.
  3. W. M. Star, B. C. Wilson, A. J. Welch, and M. J. C. van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Plenum, 1995), Chaps. 1 and 2.
  4. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (AIP, 1993).
  5. Y. Fan, A. Mandelis, G. M. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am. 116, 3523-3533 (2004). [CrossRef]
  6. X. Wang, Y. Pang, G. Ku, G. Stoica, and L. V. Wang, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739-1741 (2003). [CrossRef] [PubMed]
  7. R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J Biomed. Opt. 9, 1327-1335 (2004). [CrossRef] [PubMed]
  8. R. I. Siphanto, R. G. M. Kolkman, A. Huisjes, M. C. Pilatou, F. F. M. de Mul, W. Steenbergen, and L. N. A. van Adrichem, “Imaging of small vessels using photoacoustics: an in vivo study,” Lasers Surg. Med. 35, 354-362 (2004). [CrossRef] [PubMed]
  9. G. M. Spirou, I. A. Vitkin, B. C. Wilson, W. M. Whelan, P. M. Henrichs, K. Mehta, T. Miller, A. Yee, J. Meador, and A. A. Oraevsky, “Development and testing of an optoacoustic imaging system for monitoring and guiding prostate cancer therapies,” Proc. SPIE 5320, 44-56 (2004). [CrossRef]
  10. Y. Fan, A. Mandelis, G. M. Spirou, I. A. Vitkin, and W. M. Whelan, “Laser photothermoacoustic frequency swept heterodyned lock-in depth profilometry in turbid tissue phantoms,” Phys. Rev. E 72, 051908 (2005). [CrossRef]
  11. G. Ku, X. Wang, X. Xie, G. Stoica, and L. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44, 770-775 (2005). [CrossRef] [PubMed]
  12. S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The twente photoacoustic mammoscope: system overview and performance,” Phys. Med. Biol. 50, 2543-2557 (2005). [CrossRef] [PubMed]
  13. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Robert E. Krieger, 1990).
  14. S. A. Telenkov and A. Mandelis, “Fourier-domain biophotoacoustic subsurface depth selective amplitude and phase imaging of turbid phantoms and biological tissue,” J. Biomed. Opt. 11, 044006 (2006). [CrossRef] [PubMed]
  15. E. C. Farnett and G. H. Stevens, Radar Handbook, M. I. Skolnik, ed. (McGraw-Hill, 1990).
  16. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995). [CrossRef]
  17. G. Hausler and M. W. Lindner, “'Coherence radar' and 'spectral radar'--new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21-31 (1998). [CrossRef]
  18. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183-2189 (2003). [CrossRef] [PubMed]
  19. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  20. A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys. 47, 64-69 (1976). [CrossRef]
  21. P. Helander, “Theoretical aspects of photoacoustic spectroscopy with light scattering samples,” J. Appl. Phys. 54, 3410-3414 (1983). [CrossRef]
  22. B. C. Wilson, Encyclopedia of Human Biology, R. Dulbecco, ed. (Academic, 1991), pp. 587-597.
  23. A. Roggar, K. Dorelschel, O. Minet, D. Wölf, and G. Müller, Laser-Induced Interstitial Thermotherapy, G. J. Muller and A. Roggan, eds. (SPIE, 1995), Chap. 10.
  24. A. Mandelis and B. S. H. Royce, “Relaxation time measurements in frequency and time-domain photoacoustic spectroscopy of condensed phases,” J. Opt. Soc. Am. 70, 474-480 (1980). [CrossRef]
  25. V. G. Andreev, A. A. Karabutov, and A. A. Oraevsky, “Detection of ultrawide-band ultrasound pulses in optoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1383-1390 (2003). [CrossRef] [PubMed]
  26. S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9, 1172-1181 (2004). [CrossRef] [PubMed]
  27. A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36, 402-415 (1997). [CrossRef] [PubMed]
  28. P. Fish, Physics and instrumentation of diagnostic medical ultrasound (Wiley, 1990).
  29. G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50, N141-N153 (2005). [CrossRef] [PubMed]
  30. F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics, 2nd ed. (Prentice-Hall, 1993).
  31. J. R. Taylor, An Introduction to Error Analysis, 2nd ed.(University Science, 1982).
  32. T. L. Szabo, Diagnostic Ultrasound Imaging: Inside Out (Elsevier, 2004).
  33. G. M. Spirou, A. Mandelis, I. A. Vitkin, and W. M. Whelan, “A calibration technique for frequency domain photothermoacoustics,” Euro. Phys J. Spec. Top. 153, 491-495 (2008). [CrossRef]
  34. L. C. L. Chin, A. E. Worthington, W. M. Whelan, and I. A. Vitkin, “Determination of the optical properties of turbid media using relative interstitial radiance measurements: Monte Carlo study, experimental validation, and sensitivity analysis,” J. Biomed. Opt. 12, 064027 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited