OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 14 — May. 10, 2008
  • pp: 2574–2582

Optimizing modulation transfer spectroscopy signals for frequency locking in the presence of depleted saturating fields

David J. Hopper and Esa Jaatinen  »View Author Affiliations

Applied Optics, Vol. 47, Issue 14, pp. 2574-2582 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1215 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theoretical model of modulation transfer spectroscopy (MTS) that includes pump beam depletion is presented and experimentally verified with data covering visible iodine transitions at 532, 543, and 612 nm . This model is used to determine the values for pressure, interaction length, and saturation intensity that yield maximum MTS signals for frequency locking to iodine transitions. The approach is demonstrated for iodine transitions at 532, 633, and 778 nm , with the results showing that theoretically the frequency instability scales inversely to the absorption coefficient.

© 2008 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(120.3940) Instrumentation, measurement, and metrology : Metrology
(140.0140) Lasers and laser optics : Lasers and laser optics
(300.6190) Spectroscopy : Spectrometers
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 28, 2008
Revised Manuscript: April 10, 2008
Manuscript Accepted: April 11, 2008
Published: May 2, 2008

David J. Hopper and Esa Jaatinen, "Optimizing modulation transfer spectroscopy signals for frequency locking in the presence of depleted saturating fields," Appl. Opt. 47, 2574-2582 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Ketterle, “ Experimental studies of Bose-Einstein condensation,” Phys. Today 52, 30-35 (1999). [CrossRef]
  2. L. Wieman and T. Hollberg, “Using diode lasers for atomic physics,” Rev. of Sci. Instr. 62, 1-20 (1991).
  3. T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103-133 (2003). [CrossRef]
  4. Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hansch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, and S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2 stabilized lasers at 532 nm,” Opt. Commun. 192, 263-272 (2001). [CrossRef]
  5. L. Robertsson, S. Picard, F.-L. Hong, Y. Millerioux, P. Juncar, and L.-S. Ma, “International comparison of 127I2 stabilized lasers between BIPM, the NRLM and the BNM-INM, October 2000,” Metrologia 38, 567-572 (2001). [CrossRef]
  6. S. Picard, L. Robertsson, L.-S. Ma, Y. Millerioux, P. Juncar, J.-P. Wallerand, P. Balling, P. Kren, K. Nyholm, M. Merimaa, T. E. Ahola, and F.-L. Hong, “Results from international comparisons at the BIPM providing a world-wide reference network of 127I2 stabilized frequency doubled Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 52, 236-239 (2003). [CrossRef]
  7. J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, "Absolute Frequency Atlas of Molecular I2 lines at 532 nm," IEEE Trans. Instrum. Meas. 48, 544-549 (1999). [CrossRef]
  8. W. R. C. Rowley and P. Gill, "Performance of internal-mirror frequency-stabilized He-Ne lasers emitting green, yellow or orange light," Appl. Phys. B 51, 421-426 (1990).
  9. E. Jaatinen, "An iodine stabilized laser source at two wavelengths for accurate dimensional measurements," Rev. Sci. Instrum. 74, 1359-1361 (2003). [CrossRef]
  10. P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, "Spectroscopy using quantum logic," Science 309, 749-752 (2005). [CrossRef]
  11. S. N. Bagaev and V. P. Chebotaev, "Laser frequency standards," Sov. Phys.-Uspekhi 29, 82-103 (1986).
  12. J. H. Shirley, "Modulation transfer processes in optical heterodyne saturation spectroscopy," Opt. Lett. 7, 537-539 (1982).
  13. G. Camy, Ch. J. Borde, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturating beam,” Opt. Commun. 41, 325-329 (1982). [CrossRef]
  14. G. Camy, D. Pinaud, N. Courtier, and H. C. Chuan, “Recent developments in high resolution saturation spectroscopy obtained by means of acousto-optic modulators,” Revue Phys. Appl. 17, 357-363 (1982).
  15. J. J. Synder, R. K. Raj, M. D. Bloch, and M. Ducloy, “High Sensitivity nonlinear spectroscopy using a frequency offset pump,” Opt. Lett. 5, 163-165 (1980).
  16. L.-S. Ma and J. L. Hall, "Optical heterodyne spectroscopy enhanced by an external optical cavity: Toward improved working standards," IEEE J. Quant. Elect. 26, 2006-2012(1990).
  17. M. L. Eickhoff and J. L. Hall, "Optical Frequency Standard at 532 nm," IEEE Trans. Instrum. Meas. 44, 155-158 (1995). [CrossRef]
  18. G. Galzerano, F. Bertinetto, and E. Bava, "Characterization of the modulation transfer spectroscopy method by means of He-Ne lasers and 127I2 absorption lines at λ=612 nm," Metrologia 37, 149-154 (2000). [CrossRef]
  19. E. Jaatinen and J.-M. Chartier, "Possible influence of residual amplitude modulation when using modulation transfer with iodine transitions at 543 nm," Metrologia 35, 75-81 (1998). [CrossRef]
  20. R. Klein and A. Arie, "Observation of iodine transitions using the second and third harmonics of a 1.5-μm laser," Appl. Phys. B 75, 79-83 (2002).
  21. E. Jaatinen, "Theoretical determination of maximum signal levels obtainable with modulation transfer spectroscopy," Opt. Commun. 120, 91-97 (1995). [CrossRef]
  22. J. M. Supplee, E. A. Whittaker, and W. Lenth, "Theoretical description of frequency modulation and wavelength modulation spectroscopy," Appl. Opt. 33, 6294-6302 (1994).
  23. W. Demtroder, Laser Spectroscopy - Basic Concepts and Instrumentation, 2nd ed. (Springer, 1998).
  24. P. Cerez and S. Bennett, "Helium-Neon laser stabilised by saturated absorption in iodine at 612 nm," Appl. Opt. 18, 1079-1083 (1979).
  25. A. Schenzle, R. G. DeVoe, and R. G. Brewer, “Phase modulation laser spectroscopy,” Phys. Rev. A 25, 2606-2621 (1982). [CrossRef]
  26. W.-Y. S. Cheng and J.-T. Shy, "Wavelength standard at 543 nm and the corresponding 127I2 hyperfine transitions," J. Opt. Soc. Am. B 18, 363-369 (2001). [CrossRef]
  27. M. Glaser, "Properties of a He-Ne laser a λ=612 nm, stabilized by means of an external iodine absorption cell," IEEE Trans. Instrum. Meas. 36, 604-608 (1987).
  28. H. R. Simonsen and F. Rose, "Absolute measurement of the hyperfine splittings of six molecular 127I2 lines around the He-Ne/I2 wavelength of lambda =633 nm," Metrologia 37, 651-658 (2000). [CrossRef]
  29. P. Cerez and A. Brillet, "Iodine stablized He-Ne laser with a hot wall iodine cell," Opt. Commun. 21, 332-336 (1977). [CrossRef]
  30. A. Titov, A. I. Malinovsky, and M. Erin, "Determination of saturation parameter in iodine and precise molecular linewidth measurements in He-Ne/I2 standard at 633 nm," Opt. Commun. 136, 327-334 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited