OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 14 — May. 10, 2008
  • pp: 2583–2591

Generation of doughnutlike vortex beam with tunable orbital angular momentum from lasers with controlled Hermite–Gaussian modes

Shu-Chun Chu, Takayuki Ohtomo, and Kenju Otsuka  »View Author Affiliations


Applied Optics, Vol. 47, Issue 14, pp. 2583-2591 (2008)
http://dx.doi.org/10.1364/AO.47.002583


View Full Text Article

Enhanced HTML    Acrobat PDF (5865 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study demonstrates successive higher-order Hermite–Gaussian ( HG 0 , m ) mode operations in a microchip solid-state laser with a controlled off-axis laser diode (LD) pumping and generation of the corresponding doughnutlike laser beam of tunable ring diameter and orbital angular momentum, by experimentally focusing a Hermite–Gaussian mode (HGM) lasing beam into an astigmatic mode converter (AMC) with a mode-matching lens. Based on the successful generation of stable doughnutlike vortex beams by combining the LD off-axis pumping of microchip lasers and an AMC, this study proposes a design for a compact, solid doughnutlike vortex laser beam generator that combines three elements (i.e., laser cavity, mode-matching lens, and AMC) into one practical device. The desired doughnutlike vortex beam with different orbital angular momentum is easily generated by simply controlling the lateral off-axis pump position and pump beam shape on the laser crystal by numerical simulation.

© 2008 Optical Society of America

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 7, 2008
Manuscript Accepted: April 4, 2008
Published: May 2, 2008

Citation
Shu-Chun Chu, Takayuki Ohtomo, and Kenju Otsuka, "Generation of doughnutlike vortex beam with tunable orbital angular momentum from lasers with controlled Hermite-Gaussian modes," Appl. Opt. 47, 2583-2591 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-14-2583


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288 (1986). [CrossRef] [PubMed]
  2. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769-771 (1987). [CrossRef] [PubMed]
  3. Y. Ishii and T. Yanagida, “Single molecule detection in life science,” Single Mol. 1, 5-16 (2000). [CrossRef]
  4. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365, 721-727 (1993). [CrossRef] [PubMed]
  5. A. Ashkin and J. M. Dziedzic, “Stability of optical levitation by radiation pressure,” Appl. Phys. Lett. 24, 586 (1974). [CrossRef]
  6. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807 (1992). [CrossRef]
  7. P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett. 89, 081113 (2006). [CrossRef]
  8. S. M. Iftiquar, H. Ito, and M. Ohtsu, “Tunable donut light beam for a near-field optical funnel of atoms,” Tech. Digest of the CLEO/PR01 (IEEE, 2001), pp. 34-35.
  9. Y. Song, D. Milan, and W. T. Hill III, “Long, narrow all-light atom guide,” Opt. Lett. 24, 1805 (1999). [CrossRef]
  10. N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, “Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap,” Phys. Rev. A 61, 031403 (2000). [CrossRef]
  11. K. J. Kuhn, Laser Engineering (Prentice-Hall, 1998), p. 86.
  12. M. J. Padgett and L. Allen, “The angular momentum of light: optical spanners and the rotational frequency shift,” Opt. Quantum Electron. 31, 1-12 (1999). [CrossRef]
  13. M. Manusuripur, Classical Optics and Its Applications (Cambridge, 2002).
  14. X. Xu, K. Kim, W. Jhe, and N. Kwon, “Efficient optical guiding of trapped cold atoms by a hollow laser beam,” Phys. Rev. A 63, 3401 (2001). [CrossRef]
  15. S. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Measurement of the total optical angular momentum transfer in optical tweezers,” Opt. Express 14, 6963-6970 (2006). [CrossRef] [PubMed]
  16. J. Courtial, K. Dholakia, D. A. Robertson, L. Allen, and M. J. Padgett, “Measurement of the rotational frequency shift imparted to a rotating light beam possessing orbital angular momentum,” Phys. Rev. Lett. 80, 3217-3219 (1998). [CrossRef]
  17. J. Courtial, D. A. Robertson, K. Dholakia, L. Allen, and M. J. Padgett, “Rotational frequency shift of a light beam,” Phys. Rev. Lett. 81, 4828-4830 (1998). [CrossRef]
  18. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313 (2001). [CrossRef] [PubMed]
  19. C. Tamm and C. O. Weiss, “Bistability and optical switching of spatial patterns in a laser,” J. Opt. Soc. Am. B 7,1034-1038 (1990). [CrossRef]
  20. M. Harris, C. A. Hill, P. R. Tapster, and J. M. Vaughan, “Laser modes with helical wave fronts,” Phys. Rev. A 49, 3119-3122 (1994). [CrossRef] [PubMed]
  21. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185-8189 (1992). [CrossRef] [PubMed]
  22. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123-132(1993). [CrossRef]
  23. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221-223 (1992). [CrossRef] [PubMed]
  24. M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, “High-order Laguerre-Gaussian laser modes for studies of cold atoms,” Opt. Commun. 156, 300-306 (1998). [CrossRef]
  25. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321-327 (1994). [CrossRef]
  26. G. A. Turnball, D. A. Robertson, G. M. Smith, L. Allen, and M. J. Padgett, “The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phase plate,” Opt. Commun. 127, 183-188 (1996). [CrossRef]
  27. S. A. Kennedy, M. J. Szabo, H. Teslow, J. Z. Porterfield, and E. R. I. Abraham, “Creation of Laguerre-Gaussian laser modes using diffractive optics,” Phys. Rev. A 66, 043801 (2002). [CrossRef]
  28. S.-C. Chu and K. Otsuka, “Stable donutlike vortex beam generation from lasers with controlled Ince-Gaussian modes,” Appl. Opt. 46, 7709-7719 (2007). [CrossRef] [PubMed]
  29. K. J. Kuhn, Laser Engineering (Prentice-Hall, 1998), p. 86.
  30. A. E. Siegman, Lasers (University Science, 1986), pp 647.
  31. W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000).
  32. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991). [CrossRef]
  33. M. Endo, M. Kawakami, K. Nanri, S. Takeda, and T. Fujioka, “Two-dimensional simulation of an unstable resonator with a stable core,” Appl. Opt. 38, 3298-3307 (1999). [CrossRef]
  34. M. Endo, S. Yamaguchi, T. Uchiyama, and T. Fujioka, “Numerical simulation of the W-axicon type optical resonator for coaxial slab CO2 lasers,” J. Phys. D 34, 68-77 (2001). [CrossRef]
  35. M. Endo, “Numerical simulation of an optical resonator for generation of a doughnut-like laser beam,” Opt. Express 12, 1959 (2004). [CrossRef] [PubMed]
  36. A. Bhowmik, “Closed-cavity solutions with partially coherent fields in the space-frequency domain,” Appl. Opt. 22, 3338-3346 (1983). [CrossRef] [PubMed]
  37. J. W. Goodman, Introduction to Fourier Optics (Roberts, 2004), Chap. 4.
  38. J. W. Goodman, Introduction to Fourier Optics (Roberts, 2004), pp. 97-101.
  39. A. E. Siegman, Lasers (University Science, 1986).
  40. J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “The production of multiringed Laguerre-Gaussian modes by computer-generated holograms,” J. Mod. Opt. 45, 1231-1237 (1998). [CrossRef]
  41. K. Sueda, G. Miyaji, N. Miyanaga, and M. Nakatsuka, “Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses,” Opt. Express 12, 3548-3553 (2004). [CrossRef] [PubMed]
  42. K. J. Moh, X.-C. Yuan, W. C. Cheong, L. S. Zhang, J. Lin, B. P. S. Ahluwalia, and H. Wang, “High-power efficient multiple optical vortices in a single beam generated by a kinoform-type spiral phase plate,” Appl. Opt. 45, 1153-1161 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited