OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 14 — May. 10, 2008
  • pp: 2721–2728

Pauli algebraic analysis of polarized light modulation

Tiberiu Tudor  »View Author Affiliations

Applied Optics, Vol. 47, Issue 14, pp. 2721-2728 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1207 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The modification of the polarization and spectral structure of light by electro-optic modulation with longitudinal effect in crystals of class 4 ¯ 2 m is analyzed in the frame of a Pauli algebraic and Poincaré geometric approach. The results are generalized, in a vectorial Pauli algebraic form, for any birefringent time-varying device.

© 2008 Optical Society of America

OCIS Codes
(260.5430) Physical optics : Polarization
(250.4110) Optoelectronics : Modulators

ToC Category:
Physical Optics

Original Manuscript: January 22, 2008
Manuscript Accepted: March 14, 2008
Published: May 9, 2008

Tiberiu Tudor, "Pauli algebraic analysis of polarized light modulation," Appl. Opt. 47, 2721-2728 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Kubo and R. Nagata, “Vector representation of behavior of polarized light in a weakly inhomogeneous medium with birefringence and dichroism. II. Evolution of polarization states,” J. Opt. Soc. Am. B 2, 30-34 (1985). [CrossRef]
  2. H. Dong, P. Shum, M. Yan, and G. Ning, “Generalized frequency dependence of output Stokes parameters in an optical fiber system with PMD and PDL/PDG,” Opt. Express 13, 8875-8881 (2005). [CrossRef] [PubMed]
  3. V. S. Zapasskii and G. G. Kozlov, “Polarized light in anisotropic medium versus spin in a magnetic field,” Phys. Uspekhi 42, 817-822 (1999). [CrossRef]
  4. C. S. Brown and A. Em. Bak, “Unified formalism for polarization optics with application to polarimetry on a twisted optical fiber,” Opt. Eng. 34, 1625-1635 (1995). [CrossRef]
  5. S. E. Segre, “New formalism for the analysis of polarization evolution for radiation in a weakly nonuniform fully anisotropic medium: a magnetized plasma,” J. Opt. Soc. Am. A 18, 2601-2606 (2001). [CrossRef]
  6. N. Gisin, “Solution of the dynamical equations for polarisation dipersion,” Opt. Commun. 86, 371-373 (1991). [CrossRef]
  7. N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibres,” Opt. Commun. 142, 119-125 (1997). [CrossRef]
  8. L. Yi and A. Yariv, “Solutions to the dynamical equation of polarization-mode dispersion and polarization-dependent losses,” J. Opt. Soc. Am. B 17, 1821-1827 (2000). [CrossRef]
  9. S. E. Segre, “Evolution of the polarization state for radiation propagating in a nonuniform birefrigent, optically active and dichroic medium: the case of a magnetized plasma,” J. Opt. Soc. Am. A 17, 95-100 (2000). [CrossRef]
  10. M. Kitano and T. Yabuzaki, “Observation of Lorentz-group Berry phases in polarization optics,” Phys. Lett. A 142, 321-325 (1989). [CrossRef]
  11. R. C. Jones, “A new calculus for the treatment of optical systems. VII. Properties of the N-matrices,” J. Opt. Soc. Am. 38, 671-685 (1948). [CrossRef]
  12. R. M. A. Azzam, “Poincaré sphere representation of the fixed-polarizer rotating-retarder optical system,” J. Opt. Soc. Am. A 17, 2105-2107 (2000). [CrossRef]
  13. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1996).
  14. B. H. Billings, “The electrooptic effect in uniaxial crystals of type XH2PO4 I. Theoretical,” J. Opt. Soc. Am. 39, 797-808(1949). [CrossRef]
  15. I. P. Kaminow and E. H. Turner, “Electrooptic light modulators,” Appl. Opt. 5, 1612-1628 (1966). [CrossRef] [PubMed]
  16. C. Brosseau, Fundamentals of Polarized Light (Wiley, 1998).
  17. K. Blum, Density Matrix Theory and Applications (Plenum Press, 1981).
  18. N. W. McLachlan, Bessel Functions for Engineers (Oxford Univ. Press, 1941).
  19. T. Tudor and A. Gheondea, “Pauli algebraic forms of normal and nonnormal operators,” J. Opt. Soc. Am. A 24, 204-210(2007). [CrossRef]
  20. L. C. Biedenharn, J. D. Louck, and P. A. Caruthers, “Angular momentum in quantum physics. Theory and applications,” in Encyclopedia of Mathematics and its Applications, G. -C. Rota, ed. (Addison-Wesley, 1981), Vol. 8.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited