OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 14 — May. 10, 2008
  • pp: 2729–2738

Ray and wave tracing in uniaxial crystals perturbed by an external field

Marek Izdebski  »View Author Affiliations


Applied Optics, Vol. 47, Issue 14, pp. 2729-2738 (2008)
http://dx.doi.org/10.1364/AO.47.002729


View Full Text Article

Enhanced HTML    Acrobat PDF (640 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Uniaxial crystals may become biaxial in an external field. The general and exact law of double refraction on the boundary of an isotropic medium and a biaxial crystal lead to an unwieldy set of involved formulas. Rotations of the principal axes of the optical permittivity tensor in the crystal subjected to the field lead to further difficulties in ray and wave tracing. Therefore, we propose a calculus in which the directions of refracted rays and waves in an unperturbed uniaxial crystal are taken as the first approximation, and then small perturbations of rays and waves due to the applied field are considered. Our approach is based on Huygens’s principle and a generalized form of Fresnel’s ray equation. As an example, the method is applied to the electro-optic modulation of ray and wave directions in a BaTiO 3 crystal of 4mm symmetry.

© 2008 Optical Society of America

OCIS Codes
(080.2720) Geometric optics : Mathematical methods (general)
(120.5710) Instrumentation, measurement, and metrology : Refraction
(160.1190) Materials : Anisotropic optical materials
(160.2100) Materials : Electro-optical materials
(260.1180) Physical optics : Crystal optics

History
Original Manuscript: February 1, 2008
Manuscript Accepted: March 18, 2008
Published: May 9, 2008

Citation
Marek Izdebski, "Ray and wave tracing in uniaxial crystals perturbed by an external field," Appl. Opt. 47, 2729-2738 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-14-2729


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. C. A. Pockels, Lehrbuch der Kristalloptik (B. G. Teubner, 1904).
  2. O. N. Stavroudis, “Ray-tracing formulas for uniaxial crystals,” J. Opt. Soc. Am. 52, 187-191 (1962). [CrossRef]
  3. W. Swindell, “Extraordinary-ray and -wave tracing in uniaxial crystals,” Appl. Opt. 14, 2298-2301 (1975). [CrossRef] [PubMed]
  4. M. C. Simon, “Ray tracing formulas for monoaxial optical components,” Appl. Opt. 22, 354-360 (1983). [CrossRef] [PubMed]
  5. M. C. Simon and R. M. Echarri, “Ray tracing formulas for monoaxial optical components: vectorial formulation,” Appl. Opt. 25, 1935-1939 (1986). [CrossRef] [PubMed]
  6. Q.-T. Liang, “Simple ray tracing formulas for uniaxial optical crystals,” Appl. Opt. 29, 1008-1010 (1990). [CrossRef] [PubMed]
  7. J. D. Trolinger, R. A. Chipman, and D. K. Wilson, “Polarization ray tracing in birefringent media,” Opt. Eng. 30, 461-466(1991). [CrossRef]
  8. E. Cojocaru, “Direction cosines and vectorial relations for extraordinary-wave propagation in uniaxial media,” Appl. Opt. 36, 302-306 (1997). [CrossRef] [PubMed]
  9. G. Beyerle and I. S. McDermid, “Ray-tracing formulas for refraction and internal reflection in uniaxial crystals,” Appl. Opt. 37, 7947-7953 (1998). [CrossRef]
  10. C.-L. Lin and J.-J. Wu, “Abnormal total external refraction for waves propagating from an isotropic medium to an anisotropic medium,” Chin. J. Phys. (Taipei) 38, 24-35 (2000).
  11. M. Avendaño-Alejo, O. N. Stavroudis, and A. R. Boyain y Goitia, “Huygens's principle and rays in uniaxial anisotropic media. I. Crystals axis normal to refracting surface,” J. Opt. Soc. Am. A 19, 1668-1673 (2002). [CrossRef]
  12. M. Avendaño-Alejo and O. N. Stavroudis, “Huygens's principle and rays in uniaxial anisotropic media. II. Crystal axis orientation arbitrary,” J. Opt. Soc. Am. A 19, 1674-1679 (2002). [CrossRef]
  13. Yu. I.Sirotin and M. P. Shaskolskaya, Fundamentals of Crystal Physics, English transl. (Mir, 1982).
  14. M. Izdebski and W. Kucharczyk, “Systematic approach for finding configurations for measuring quadratic electro-optic coefficients in noncentrosymmetric crystals,” J. Opt. Soc. Am. B 25, 149-152 (2008). [CrossRef]
  15. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  16. M. Izdebski, W. Kucharczyk, and R. E. Raab, “On relationships between electro-optic coefficients for impermeability and nonlinear electric susceptibilities,” J. Opt. A 6, 421-424 (2004). [CrossRef]
  17. M. Izdebski, “Application of the general Jacobi diagonalization method to the optical properties of a medium perturbed by an external field,” Appl. Opt. 45, 8262-8272 (2006). [CrossRef] [PubMed]
  18. A. R. Johnson and J. M. Weingart, “Determination of the low-frequency linear electro-optic effect in tetragonal BaTiO3,” J. Opt. Soc. Am. 55, 828-834 (1965). [CrossRef]
  19. M. Izdebski, W. Kucharczyk, and R. E. Raab, “Analysis of accuracy of measurement of quadratic-electro optic coefficients in uniaxial crystals: a case study of KDP,” J. Opt. Soc. Am. A 19, 1417-1421 (2002). [CrossRef]
  20. I. P. Kaminow, An Introduction to Electrooptic Devices (Academic, 1974).
  21. M. Melnichuk and L. T. Wood, “Method for measuring off-diagonal Kerr coefficients by using ploraized light transmission,” J. Opt. Soc. Am. A 22, 377-384 (2005). [CrossRef]
  22. M. Melnichuk and L. T. Wood, “Method for measuring off-diagonal Kerr coefficients by using polarized light transmission: errata,” J. Opt. Soc. Am. A 24, 2843 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited