OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 15 — May. 20, 2008
  • pp: 2739–2749

Sensitivity of coded mask telescopes

Gerald K. Skinner  »View Author Affiliations

Applied Optics, Vol. 47, Issue 15, pp. 2739-2749 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1175 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Simple formulas are often used to estimate the sensitivity of coded mask x-ray or gamma-ray telescopes, but these are strictly applicable only if a number of basic assumptions are met. Complications arise, for example, if a grid structure is used to support the mask elements, if the detector spatial resolution is not good enough to completely resolve all the detail in the shadow of the mask, or if any of a number of other simplifying conditions are not fulfilled. We derive more general expressions for the Poisson-noise-limited sensitivity of astronomical telescopes using the coded mask technique, noting explicitly in what circumstances they are applicable. The emphasis is on using nomenclature and techniques that result in simple and revealing results. Where no convenient expression is available a procedure is given that allows the calculation of the sensitivity. We consider certain aspects of the optimization of the design of a coded mask telescope and show that when the detector spatial resolution and the mask to detector separation are fixed, the best source location accuracy is obtained when the mask elements are equal in size to the detector pixels.

© 2008 Optical Society of America

OCIS Codes
(100.1830) Image processing : Deconvolution
(110.4280) Imaging systems : Noise in imaging systems
(340.7430) X-ray optics : X-ray coded apertures

ToC Category:
X-ray Optics

Original Manuscript: January 9, 2008
Manuscript Accepted: February 25, 2008
Published: May 12, 2008

Gerald K. Skinner, "Sensitivity of coded mask telescopes," Appl. Opt. 47, 2739-2749 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. D. Barthelmy, L. M. Barbier, J. R. Cummings, E. E. Fenimore, N. Gehrels, D. Hullinger, H. A. Krimm, C. B. Markwardt, D. M. Palmer, A. Parsons, G. Sato, M. Suzuki, T. Takahashi, M. Tashiro, and J. Tueller, “The Burst Alert Telescope (BAT) on the SWIFT Midex mission,” Space Sci. Rev. 120, 143-164 (2005). [CrossRef]
  2. C. Winkler, T. J.-L. Courvoisier, G. Di Cocco, N. Gehrels, A. Giménez, S. Grebenev, W. Hermsen, J. M. Mas-Hesse, F. Lebrun, N. Lund, G. G. C. Palumbo, J. Paul, J.-P. Roques, H. Schnopper, V. Schönfelder, R. Sunyaev, B. Teegarden, P. Ubertini, G. Vedrenne, and A. J. Dean, “The INTEGRAL mission,” Astron. Astrophys. 411, L1-L6 (2003). [CrossRef]
  3. A. M. Levine, H. Bradt, W. Cui, J. G. Jernigan, E. H. Morgan, R. Remillard, R. E. Shirey, and D. A. Smith, “First results from the all-sky monitor on the Rossi x-ray timing explorer,” Astrophys. J. 469, L33-L36 (1996). [CrossRef]
  4. F. Tokanai, M. Matsuoka, N. Kawai, A. Yoshida, M. Yamauchi, K. Takagishi, I. Hatsukade, E. E. Fenimore, M. Galassi, and J. J. in 't Zand, I. A. Bond, K. Morimoto, and H. Nakamura, “Performance of wide-field x-ray monitor on board HETE (High-Energy Transient Experiment),” Proc. SPIE 2808, 563-570(1996). [CrossRef]
  5. R. Jager, W. A. Mels, A. C. Brinkman, M. Y. Galama, H. Goulooze, J. Heise, P. Lowes, J. M. Muller, A. Naber, A. Rook, R. Schuurhof, J. J. Schuurmans, and G. Wiersma, “The wide field cameras onboard the BeppoSAX x-ray astronomy satellite,” Astron. Astrophys. Suppl. Ser. 125, 557-572 (1997).
  6. R. Vanderspek, J. Villaseñor, J. Doty, J. G. Jernigan, A. Levine, G. Monnelly, and G. R. Ricker, “GRB observations with the HETE soft x-ray cameras,” Astron. Astrophys. 138, 565-566(1999).
  7. E. Caroli, J. B. Stephen, G. di Cocco, L. Natalucci, and A. Spizzichino, “Coded aperture imaging in x- and gamma-ray astronomy,” Space Sci. Rev. 45, 349-403 (1987). [CrossRef]
  8. G. K. Skinner, “Coding (and decoding) coded mask telescopes,” Exp. Astron. 6, 1-7 (1995). [CrossRef]
  9. J. G. Ables, “Fourier transform photography: a new method for x-ray astronomy,” Proc. Astron. Soc. Australia 1, 172-173(1968).
  10. R. H. Dicke, “Scatter-hole cameras for x-rays and gamma rays,” Astrophys. J. 153, L101 (1968). [CrossRef]
  11. L. Mertz, Transformations in Optics (Wiley, 1965).
  12. L. Mertz, “Ancestry of indirect techniques for x-ray imaging,” Proc. SPIE 1159, 14-17 (1989).
  13. J. Gunson and B. Polychronopulos, “Optimum design of a coded mask x-ray telescope for rocket applications,” Mon. Not. R. Astron. Soc. 177, 485-497 (1976).
  14. E. E. Fenimore and T. M. Cannon, “Coded aperture imaging with uniformly redundant arrays,” Appl. Opt. 17, 337-347 (1978).
  15. R. J. Proctor, G. K. Skinner, and A. P. Willmore, “The design of optimum coded mask x-ray telescopes,” Mon. Not. R. Astron. Soc. 187, 633-643 (1979).
  16. A. B. Giles, “Self-supporting perfect masks for 2-D infrared and x-ray imaging,” Appl. Opt. 20, 3068-3072 (1981).
  17. M. Oda, “X-ray imaging techniques--modulation collimator and coded mask.” Adv. Space Res. 2, 207-216 (1982). [CrossRef]
  18. W. J. Wild, “Dilute uniformly redundant sequences for use in coded-aperture imaging,” Opt. Lett. 8, 247-249 (1983).
  19. A. R. Gourlay and N. G. S. Young, “Coded aperture imaging: a class of flexible mask designs,” Appl. Opt. 23, 4111-4117(1984).
  20. M. H. Finger and T. A. Prince, “Hexagonal uniformly redundant arrays for coded-aperture imaging,” in “Proceedings of the International Cosmic Ray Conference,” F.C.Jones, ed. (NASA, 1985), pp. 295-298.
  21. S. R. Gottesman and E. J. Schneid, “PNP--A new class of coded aperture arrays,” IEEE Trans. Nucl. Sci. 33, 745-749(1986).
  22. K. Byard, “Square element antisymmetric coded apertures,” Exp. Astron. 2, 227-232 (1992). [CrossRef]
  23. K. Byard, “On self-supporting coded aperture arrays,” Nucl. Instrum. Methods Phys. Res. A 322, 97-100 (1992).
  24. L. E. Kopilovich and L. G. Sodin, “Synthesis of coded masks for gamma-ray and x-ray telescopes,” Mon. Not. R. Astron. Soc. 266, 357-359 (1994).
  25. L. G. Sodin, “Synthesis of coded masks for x-ray and gamma-ray telescopes,” Astron. Lett. 21, 423-427 (1995).
  26. H. D. Lüke and A. Busboom, “Binary arrays with perfect odd-periodic autocorrelation,” Appl. Opt. 36, 6612-6619 (1997).
  27. A. Busboom, H. D. Schotten, and H. Elders-Boll, “Coded aperture imaging with multiple measurements,” J. Opt. Soc. Am. A 14, 1058-1065 (1997). [CrossRef]
  28. R. Accorsi, F. Gasparini, and R. C. Lanza, “Optimal coded aperture patterns for improved SNR in nuclear medicine imaging,” Nucl. Instrum. Methods Phys. Res. A 474, 273-284 (2001).
  29. S. R. Gottesman and E. E. Fenimore, “New family of binary arrays for coded aperture imaging,” Appl. Opt. 28, 4344-4352 (1989).
  30. H. D. Lüke and A. Busboom, “Mismatched filtering of periodic and odd-periodic binary arrays,” Appl. Opt. 37, 856-864 (1998).
  31. M. R. Sims, M. J. L. Turner, and R. Willingale, “The influence of disturbing effects on the performance of a wide field coded mass x-ray camera,” Nucl. Instrum. Methods Phys. Res. A 228, 512-531 (1985).
  32. D. Vigneau and D. W. Robinson, “Large coded aperture mask for spaceflight hard x-ray images,” Proc. SPIE 4851, 1326-1335 (2003). [CrossRef]
  33. A. P. Hammersley and G. K. Skinner, “Data processing of imperfectly coded images.” Nucl. Instrum. Methods Phys. Res. A 221, 45-48 (1984).
  34. R. Willingale, “Use of the maximum entropy method in x-ray astronomy,” Mon. Not. R. Astron. Soc. 194, 359-364 (1981).
  35. R. Willingale, M. R. Sims, and M. J. L. Turner, “Advanced deconvolution techniques for coded aperture imaging,” Nucl. Instrum. Methods Phys. Res. A 221, 60-66 (1984).
  36. M. L. McConnell, E. L. Chupp, P. P. Dunphy, D. J. Forrest, and A. Owens, “The problem of nonuniform background rates in a coded aperture gamma-ray telescope,” in Proceedings of the International Cosmic Ray Conference (Nauka, 1987), p. 309-311.
  37. A. P. Willmore, D. Bertram, M. P. Watt, G. K. Skinner, T. J. Ponman, M. J. Church, J. R. H. Herring, and C. J. Eyles, “Image correction in a coded mask x-ray telescope,” Mon. Not. R. Astron. Soc. 258, 621-628 (1992).
  38. J. E. Grindlay, D. Barret, K. S. K. Lum, R. P. Manandhar, B. Robbason, and S. Vance, “New wavelet methods for flatfielding coded aperture images,” in Imaging in High Energy Astronomy, L. Bassani and G. DiCocco, eds. (Kluwer Academic, 1995), p. 213-220.
  39. R. M. Rideout and G. K. Skinner, “Minimum error image reconstruction for coded mask telescopes,” Astron. Astrophys. 120, 579-585 (1996).
  40. L. Bouchet, J. P. Roques, J. Ballet, A. Goldwurm, and J. Paul, “The SIGMA/Granat telescope: calibration and data reduction,” Astrophys. J. 548, 990-1009 (2001). [CrossRef]
  41. G. Skinner and P. Connell, “The Spiros imaging software for the INTEGRAL SPI spectrometer,” Astron. Astrophys. 411, L123-L126 (2003). [CrossRef]
  42. A. W. Strong, “Maximum entropy imaging with INTEGRAL/SPI data,” Astron. Astrophys. 411, L127-L129 (2003). [CrossRef]
  43. B. M. Schäfer and N. Kawai, “A Fourier-based algorithm for modelling aberrations in HETE-2's imaging system,” Nucl. Instrum. Methods Phys. Res. A 500, 263-271 (2003).
  44. C. B. Markwardt, J. Tueller, G. K. Skinner, N. Gehrels, S. D. Barthelmy, and R. F. Mushotzky, “The SWIFT/BAT high-latitude survey: first results,” Astrophys. J. 633, L77-L80 (2005). [CrossRef]
  45. J. E. Grindlay and J. Hong, “Optimizing wide-field coded aperture imaging: radial mask holes and scanning,” Proc. SPIE 5168, 402-410 (2004). [CrossRef]
  46. D. L. Band, J. E. Grindlay, J. Hong, G. Fishman, D. H. Hartmann, A. GarsonIII, H. Krawczynski, S. Barthelmy, N. Gehrels, and G. Skinner, “EXIST's gamma-ray burst sensitivity,” Astrophys. J. 673, 1225-1232 (2008).
  47. P. L. Jensen, K. Clausen, C. Cassi, F. Ravera, G. Janin, C. Winkler, and R. Much, “The INTEGRAL spacecraft--in-orbit performance,” Astron. Astrophys. 411, L7-L17 (2003). [CrossRef]
  48. T. M. Palmieri, “An x-ray telescope sensitive at high energies,” Ap. Space Sci. 26, 431-445 (1974).
  49. E. E. Fenimore, “Coded aperture imaging--predicted performance of uniformly redundant arrays,” Appl. Opt. 17, 3562-3570 (1978).
  50. E. Caroli, R. C. Butler, G. di Cocco, P. P. Maggioli, L. Natalucci, and A. Spizzichino, “Coded masks in x- and gamma-ray astronomy--The problem of the signal-to-noise ratio evaluation,” Nuovo Cimento C 7, 786-804 (1984).
  51. J. J. M. in 't Zand, J. Heise, and R. Jager, “The optimum open fraction of coded apertures: with an application to the wide field x-ray cameras of SAX,” Astron. Astrophys. 288, 665-674 (1994).
  52. This illustrates an approximation in the approach used here. The shadow of a source at trial positions away from the peak cannot be totally independent of that expected for a source at the peak position . The process described here is equivalent to correlation with a mean-subtracted form of the expected count distribution, which must produce a function with a mean of zero. Thus, a positive peak implies a negative mean level elsewhere. The effect goes inversely with the number of resolution elements in the field of view and becomes negligible for sufficiently large N.
  53. G. K. Skinner and T. J. Ponman, “On the properties of images from coded mask telescopes,” Mon. Not. R. Astron. Soc. 267, 518 (1994).
  54. The same symbols are used indiscriminately here for the observed and expected numbers of events as the one is the best estimate of the other.
  55. W. Cash, “Parameter estimation in astronomy through application of the likelihood ratio,” Astrophys. J. 228, 939-947 (1979). [CrossRef]
  56. R. N. Bracewell, “The Fourier Transform and Its Applications,” 2nd ed. (McGraw-Hill, 1986)
  57. Note that the Ci are counts per pixel where CS and CB were totals for all the pixels of a particular category.
  58. Sometimes S/(σS-1) is used for a better approximation but the differences are small in practical cases.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited