OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 15 — May. 20, 2008
  • pp: 2790–2797

Dynamics of gas flow in hollow core photonic bandgap fibers

Jes Henningsen and Jan Hald  »View Author Affiliations


Applied Optics, Vol. 47, Issue 15, pp. 2790-2797 (2008)
http://dx.doi.org/10.1364/AO.47.002790


View Full Text Article

Enhanced HTML    Acrobat PDF (1634 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dynamics of gas flow in a hollow core photonic bandgap fiber is studied over four decades of pressure covering free molecular flow as well as hydrodynamic flow. Expressions are derived that allow for determination of the pressure inside the fiber as a function of time and position in the limits of Knudsen number K n 1 and K n 1 . The expressions, which are validated by using absorption lines of acetylene as probes of the pressure inside the fiber, provide a straightforward way of predicting the temporal response for gas sensors of any fiber geometry.

© 2008 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.4005) Fiber optics and optical communications : Microstructured fibers
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 1, 2008
Manuscript Accepted: April 11, 2008
Published: May 13, 2008

Citation
Jes Henningsen and Jan Hald, "Dynamics of gas flow in hollow core photonic bandgap fibers," Appl. Opt. 47, 2790-2797 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-15-2790


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358-362 (2003). [CrossRef]
  2. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729-4749 (2006). [CrossRef]
  3. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539 (1999). [CrossRef]
  4. Y. Hoo, W. Jin, C. Shi, H. Ho, D. Wang, and S. Huan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42, 3509-3515 (2003). [CrossRef]
  5. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sorensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12, 4080-4087 (2004). [CrossRef]
  6. J. Pawlat, T. Sugiyama, T. Matsuo, and T. Ueda, “Photonic bandgap fiber for a sensing device,” IEE Trans. Sensors Micromachines 127, 160-164 (2007).
  7. F. Benabid, F. Couny, J. Knight, T. Birks, and P. J. Russel, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers,” Nature 434, 488-491 (2005).
  8. S. Ghosh, J. Sharping, D. Ouzounov, and A. L. Gaeta, “Resonant optical interaction with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005). [CrossRef]
  9. J. Henningsen, J. Hald, and J. Petersen, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13, 10475-10482 (2005). [CrossRef]
  10. R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large core photonic bandgap fiber,” Opt. Lett. 31, 2489-2491, (2006). [CrossRef]
  11. F. Couny, P. Light, F. Benabid, and P. St. J. Russell, “Electromagnetically induced transparency and saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber,” Opt. Commun. 236, 28-31 (2006). [CrossRef]
  12. J. Hald, J. Henningsen, and J. Petersen, “Saturated optical absorption by slow molecules in hollow-core photonic bandgap fibers,” Phys. Rev. Lett. 98, 213902 (2007). [CrossRef]
  13. Y. Hoo, W. Jin, H. Ho, and D. Wang, “Measurement of gas diffusion coefficient using photonic crystal fiber,” IEEE Photon. Tecnol. Lett. 15, 1434-1436 (2003).
  14. Y. Hoo, W. Jin, H. Ho, J. Ju, and D. Wang, “Gas diffusion measurement using hollow-core photonic bandgap fiber,” Sens. Actuators B 105, 183-186 (2005).
  15. http://crystal-fibre.com
  16. M. Knudsen, “Die Gesetze der Molekularstroemung und der inneren Reibungsstroemung der Gase durch Roehren,” Ann. Phys. 333, 75-130 (1909).
  17. E. H. Kennard, Kinetic Theory of Gases (McGraw-Hill, 1938).
  18. R. Present, Kinetic Theory of Gases (McGraw-Hill, 1958).
  19. B. Lautrup, Physics of Continuous Matter (IOP Publishing Ltd., 2005).
  20. R. S. Mulliken and W. C. Ermler, Polyatomic Molecules (Academic, 1981).
  21. H. Babovsky, “On Knudsen flows within thin tubes,” J. Stat. Phys. 44, 865-878 (1986). [CrossRef]
  22. W. Swann and S. Gilbert, “Pressure-induced shift and broadening of 1510-1540 nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B 17, 1263-1270 (2000). [CrossRef]
  23. M. Kusaba and J. Henningsen, “The ν1+ν3 and the ν1+ν2+ν14+ν5-1 combination bands of 13C2H2 linestrengths, broadening parameters, and pressure shifts,” J. Mol. Spectrosc. 209, 216 (2001). [CrossRef]
  24. B. J. Bailey, “The viscosity of carbon dioxide and acetylene at atmospheric pressure,” J. Phys. D 3, 550-562 (1970).
  25. C. J. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, “Photonic band-gap fiber gas cell fabricated using femtosecond micromachining,” Opt. Express 15, 6690-6695 (2007). [CrossRef]
  26. A. van Brakel, C. Grivas, M. N. Petrovich, and D. J. Richardson, “Micro-channels machined in microstructured optical fibers by femtosecond laser,” Opt. Express 15, 8731-8736 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited