OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 15 — May. 20, 2008
  • pp: 2798–2805

Photoluminescence emission profiles of Y 2 O 3 : Eu films composed of high–low density stacks produced by glancing angle deposition

James Gospodyn, Michael T. Taschuk, Peter C. P. Hrudey, Ying Y. Tsui, Robert Fedosejevs, Michael J. Brett, and Jeremy C. Sit  »View Author Affiliations


Applied Optics, Vol. 47, Issue 15, pp. 2798-2805 (2008)
http://dx.doi.org/10.1364/AO.47.002798


View Full Text Article

Enhanced HTML    Acrobat PDF (5272 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Periodic high-/low-index film stacks composed of Y 2 O 3 : Eu were grown by glancing angle deposition on silicon and fused silica substrates. Postdeposition annealing at temperatures from 600 to 1000 ° C for 1     h in air was performed to activate photoluminescence. Absolute photoluminescence spectra were obtained as a function of observation angle. The angular emission distribution was non-Lambertian, with peak emission at angles of 50 ° to 60 ° with respect to substrate normal. Spectroscopic transmittance and ellipsometry measurements were performed to characterize the films. Using this description, we were able to reproduce the angular photoluminescence patterns of the films.

© 2008 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.5690) Materials : Rare-earth-doped materials
(230.1480) Optical devices : Bragg reflectors
(230.4000) Optical devices : Microstructure fabrication
(310.1860) Thin films : Deposition and fabrication
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Materials

History
Original Manuscript: December 6, 2007
Revised Manuscript: April 24, 2008
Manuscript Accepted: April 28, 2008
Published: May 14, 2008

Citation
James Gospodyn, Michael T. Taschuk, Peter C. P. Hrudey, Ying Y. Tsui, Robert Fedosejevs, Michael J. Brett, and Jeremy C. Sit, "Photoluminescence emission profiles of Y2O3:Eu films composed of high-low density stacks produced by glancing angle deposition," Appl. Opt. 47, 2798-2805 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-15-2798


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin-films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032-1035 (1995). [CrossRef]
  2. K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115-1122 (1998). [CrossRef]
  3. K. Robbie and M. J. Brett, “Glancing angle deposition of thin films,” U.S. patent 6,206,065 (27 March, 2001).
  4. K. Robbie and M. J. Brett, “Method of depositing shadow sculpted thin films,” U.S. patent 5,866,204 (2 February, 1999).
  5. S.-H. Woo and C. K. Hwangbo, “Optical anisotropy of TiO2 and MgF2 thin films prepared by glancing angle deposition,” J. Korean Phys. Soc. 49, 2136-2142 (2006).
  6. H. H. Wang and Y. P. Zhao, “Nanostructure evolution of YBa2Cu3Ox thin films grown by pulsed-laser glancing-angle deposition,” J. Vac. Sci. Technol. B 24, 1230-1233 (2006). [CrossRef]
  7. F. Tang, T. Karabacak, L. Li, M. Pelliccione, G.-C. Wang, and T.-M. Lu, “Power-law scaling during shadowing growth of nanocolumns by oblique angle deposition,” J. Vac. Sci. Technol. A 25, 160-166 (2007). [CrossRef]
  8. J. J. Steele and M. J. Brett, “Nanostructure engineering in porous columnar thin films: recent advances,” J. Mater. Sci.-Mater. El. 18, 367-379 (2007). [CrossRef]
  9. D. Vick, J. C. Sit, and M. J. Brett, “Glancing angle deposition of thin films” in Recent Developments in Vacuum Science and Technology, J. Dabrowski, ed. (Research Signpost, 2003), pp. 67-94.
  10. K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460-1465 (1997). [CrossRef]
  11. A. C. van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, “Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition,” Opt. Lett. 29, 2545-2547(2004). [CrossRef] [PubMed]
  12. S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42, 4573-4579 (2003). [CrossRef] [PubMed]
  13. S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett. 2, 59-62 (2002). [CrossRef]
  14. M. O. Jensen and M. J. Brett, “Square spiral 3D photonic bandgap crystals at telecommunications frequencies,” Opt. Express 13, 3348 (2005). [CrossRef] [PubMed]
  15. K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, “Vacuum evaporated porous silicon photonic interference filters,” Appl. Opt. 42, 4212-4219 (2003). [CrossRef] [PubMed]
  16. Z.-C. Shen, W.-J. Kong, S.-J. Liu, J. Shen, J.-D. Shao, and Z.-X. Fan, “Refractive index analysis of graded index coatings prepared by glancing angle deposition,” Acta Phys. Sin. 55, 5157-5160 (2006).
  17. M. W. Seto, K. Robbie, D. Vick, M. J. Brett, and L. Kuhn, “Mechanical response of thin films with helical microstructures,” J. Vac. Sci. Technol. B 17, 2172-2177 (1999). [CrossRef]
  18. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, 1999). [PubMed]
  19. I. J. Hodgkinson, Q. H. Wu, A. Lakhtakia, and M. W. McCall, “Spectral-hole filter fabricated using sculptured thin-film technology,” Opt. Comm. 177, 79-84 (2000). [CrossRef]
  20. M. M. Hawkeye and M. J. Brett, “Narrow bandpass optical filters fabricated with one-dimensionally periodic inhomogeneous thin films,” J. Appl. Phys. 100, 044322 (2006). [CrossRef]
  21. N. Takada, T. Tsutsui, and S. Saito, “Control of emission characteristics in organic thin-film electroluminescent diodes using an optical-microcavity structure,” Appl. Phys. Lett. 63, 2032-2034 (1993). [CrossRef]
  22. T. Tsutsui, N. Takada, S. Saito, and E. Ogino, “Sharply directed emission in organic electroluminescent diodes with an optical-microcavity structure,” Appl. Phys. Lett. 65, 1868-1870 (1994). [CrossRef]
  23. S. Setzu, P. Ferrand, and R. Romestain, “Optical properties of multilayered porous silicon,” Mat. Sci. Eng. B-Solid 69-70, 34-42 (2000). [CrossRef]
  24. E. F. Schubert, N. E. J. Hunt, A. M. Vredenberg, T. D. Harris, J. M. Poate, D. C. Jacobson, Y. H. Wong, and G. J. Zydzik, “Enhanced photoluminescence by resonant absorption in Er-doped SiO2/Si microcavities,” Appl. Phys. Lett. 63, 2603-2605 (1993). [CrossRef]
  25. A. M. Glass, N. E. J. Hunt, J. M. Poate, E. F. Schubert, and G. J. Zydzik, “ Absorption resonant rare earth-doped micro-cavities,” U.S. patent 5,363,398 (8 November, 1994).
  26. D. Kouznetsov, J.-F. Bisson, K. Takaichi, and K.-i. Ueda, “High-power single-mode solid-state laser with a short, wide unstable cavity,” J. Opt. Soc. Am. B 22, 1605-1619 (2005). [CrossRef]
  27. J. Gospodyn and J. C. Sit, “Characterization of dielectric columnar thin films by variable angle Mueller matrix and spectroscopic ellipsometry,” Opt. Mater. 29, 318-325 (2006). [CrossRef]
  28. P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, J. C. Sit, and M. J. Brett, “Evaporated nanostructured Y2O3:Eu thin films,” J. Nanosci. Nanotech. 5, 229-234 (2005). [CrossRef]
  29. P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, and M. J. Brett, “Optical properties of porous nanostructured Y2O3:Eu thin films,” J. Vac. Sci. Technol. A 23, 856-861(2005). [CrossRef]
  30. M. F. Schubert, J.-Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007). [CrossRef]
  31. S. L. Jones, D. Kumar, K.-G. Cho, R. Singh, and P. H. Holloway, “Pulsed laser deposition of Y2O3:Eu thin film phosphors,” Displays 19, 151-167 (1999). [CrossRef]
  32. P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, and M. J. Brett, “Effects of film structure on photoluminescence emission properties of nanostructured Y2O3:Eu thin films,” Proc. SPIE 5510, 78-87 (2004). [CrossRef]
  33. S. M. Pursel, M. W. Horn, and A. Lakhtakia, “Blue-shifting of circular Bragg phenomenon by annealing of chiral sculptured thin films,” Opt. Express 14, 8001-8012 (2006). [CrossRef] [PubMed]
  34. K. Kaminska, A. Amassian, L. Martinu, and K. Robbie, “Growth of vacuum evaporated ultraporous silicon studied with spectroscopic ellipsometry and scanning electron microscopy,” J. Appl. Phys. 97, 013511 (2005). [CrossRef]
  35. J. J. Steele, J. Gospodyn, J. C. Sit, and M. J. Brett, “Impact of morphology on high-speed humidity sensor performance,” IEEE Sens. J. 6, 24-27 (2006). [CrossRef]
  36. R. N. Tait, T. Smy, and M. J. Brett, “Modeling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196-201 (1993). [CrossRef]
  37. J. A. Woollam, B. Johs, C. M. Herzinger, J. Hilfiker, R. Synowicki, and C. L. Bungay, “Overview of variable angle spectroscopic ellipsometry (VASE), Part I: Basic theory and typical applications,” Proc. SPIE. CR72, 3-28 (1999).
  38. H. G. Tompkins and W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry: A User's Guide (Wiley, 1999).
  39. G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, 1994). [CrossRef]
  40. S. Nakamura, “Principal phosophor materials and their optical properties,” in Phosophor Handbook, 2nd ed., W. M. Yen, S. Shionoya, and H. Yamamoto, eds. (CRC Press, 2007).
  41. T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe, and M. Senna, “Relationship between optical properties and crystallinity of nanometer Y2O3:Eu phosphor,” Appl. Phys. Lett. 76, 1549-1551 (2000). [CrossRef]
  42. G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371-373 (1996). [CrossRef]
  43. G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region (erratum),” Appl. Phys. Lett. 69, 2137-2137 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited