OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 15 — May. 20, 2008
  • pp: 2806–2812

Wavelength- and amplitude-modulated photoacoustics: comparison of simulated and measured spectra of higher harmonics

M. Angelmahr, A. Miklós, and P. Hess  »View Author Affiliations

Applied Optics, Vol. 47, Issue 15, pp. 2806-2812 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1452 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photoacoustic (PA) spectra generated by current modulation of a distributed feedback diode laser (DFB-DL) were measured for the ammonia absorption line at 1.53 μm and calculated using absorption spectra taken from a database. The algorithm is based on a combined amplitude- and wavelength-modulation (AM–WM) scheme. The spectral characteristics of the DFB-DL were determined by comparing simulated spectra with Fourier transform infrared measurements. PA spectra were measured and simulated from the first to fourth harmonic and a variation of the modulation depth with modulation frequency was observed. It was found that combined AM–WM modulation may produce larger PA signals than separate AM or WM detection for the first harmonic.

© 2008 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6380) Spectroscopy : Spectroscopy, modulation
(110.5125) Imaging systems : Photoacoustics

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 18, 2008
Revised Manuscript: March 18, 2008
Manuscript Accepted: March 21, 2008
Published: May 14, 2008

M. Angelmahr, A. Miklós, and P. Hess, "Wavelength- and amplitude-modulated photoacoustics: comparison of simulated and measured spectra of higher harmonics," Appl. Opt. 47, 2806-2812 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. E. Webber, T. MacDonald, M. B. Pushkarsky, C. K. N. Patel, Y. J. Zhao, N. Marcillac, and F. M. Mitloehner, “Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy,” Meas. Sci. Technol. 16, 1547-1553 (2005). [CrossRef]
  2. D. U. Schramm, M. S. Sthel, M. G. da Silva, L. O. Carneiro, A. J. S. Junior, A. P. Souza, and H. Vargas, “Application of laser photoacoustic spectroscopy for the analysis of gas samples emitted by diesel engines,” Infrared Phys. Technol. 44, 263-269 (2003). [CrossRef]
  3. S. Schilt, L. Thévenaz, M. Nikles, L. Emmenegger, and C. Huglin, “Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications,” Spectrochim. Acta A 60, 3259-3268 (2004). [CrossRef]
  4. H. W. A. Berkelmans, B. W. M. Moeskops, J. Bominaar, P. T. J. Scheepers, and F. J. M. Harren, “Pharmacokinetics of ethylene in man by on-line laser photoacoustic detection,” Toxicology and applied pharmacology 190, 206-213 (2003). [CrossRef] [PubMed]
  5. G. Giubileo, A. Puiu, G. Argirò, P. Rocchini, and E. Borra, “Analysis of the breath from patients treated by anti-tumour radio-therapy,” Laser Phys. 14, 243-249 (2004).
  6. S. Schilt and L. Thévenaz, “Wavelength modulation photoacoustic spectroscopy: theoretical description and experimental results,” Infrared Phys. Technol. 48, 154-162 (2006). [CrossRef]
  7. J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers--comparison of experiment and theory,” Appl. Phys. B 26, 203-210 (1981). [CrossRef]
  8. L. C. Philippe and R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090-6103 (1993). [CrossRef] [PubMed]
  9. P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry--an extensive scrutiny of the generation of signals,” Spectrochim. Acta B 56, 1277-1354 (2001). [CrossRef]
  10. O. Axner, P. Kluczynski, and A. M. Lindberg, “A general non-complex analytical expression for the nth Fourier component of a wavelength-modulated Lorentzian lineshape function,” J. Quant. Spectrosc. Radiat. Transfer 68, 299-317 (2001). [CrossRef]
  11. S. Schilt, L. Thévenaz, and P. Robert, “Wavelength modulation spectroscopy: combined frequency and intensity laser modulation,” Appl. Opt. 42, 6728-6738 (2003). [CrossRef] [PubMed]
  12. A. Schmohl, A. Miklós, and P. Hess, “Detection of ammonia by photoacoustic spectroscopy with semiconductor lasers,” Appl. Opt. 41, 1815-1823 (2002). [CrossRef] [PubMed]
  13. A. Miklós, P. Hess, and Z. Bozoki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937-1955 (2001). [CrossRef]
  14. P. M. Morse and K. U. Ingard, Theoretical Acoustics (McGraw-Hill, 1986).
  15. J. Hinderling, M. W. Sigrist, and F. K. Kneubühl, “Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14 μm atmospheric window,” Infrared Phys. 27, 63-120 (1987). [CrossRef]
  16. A. Miklós, Z. Bozóki, Y. Jiang, and M. Fehér, “Experimental and theoretical investigation of photoacoustic signal generation by wavelength-modulated diode lasers,” Appl. Phys. B 58, 483-492 (1994). [CrossRef]
  17. D. Meschede, Optik, Licht und Laser, 2nd ed. (Teubner, 2005).
  18. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, A. J. Vander, P. Varanasi, and G. Wagner, “The hitran 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005). [CrossRef]
  19. S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson, “Gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc. 58, 1452-1461 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited