OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 15 — May. 20, 2008
  • pp: 2882–2887

Broadband wide-angle polarization converter for LCD backlight

Chang-Ching Tsai and Shin-Tson Wu  »View Author Affiliations

Applied Optics, Vol. 47, Issue 15, pp. 2882-2887 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2989 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel polarization converter using reflective metallic gratings and a polarization beam splitter is introduced for LCD backlight illumination. These two optical elements form a polarization rotation resonator. Broadband and high optical efficiency of polarization conversion in the visible region is achieved through the resonance of the refracted light and the surface plasmon wave in metallic surface-relief gratings. For wide-angle illumination, the conversion efficiency with arbitrary incident angle is studied. This device can convert unpolarized light to linear polarization with over 85% efficiency.

© 2008 Optical Society of America

OCIS Codes
(230.5440) Optical devices : Polarization-selective devices
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optical Devices

Original Manuscript: April 18, 2008
Manuscript Accepted: April 24, 2008
Published: May 15, 2008

Chang-Ching Tsai and Shin-Tson Wu, "Broadband wide-angle polarization converter for LCD backlight," Appl. Opt. 47, 2882-2887 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006). [CrossRef]
  2. D. Armitage, I. Underwood, and S. T. Wu, Introduction to Microdisplays (Wiley, 2006). [CrossRef]
  3. J. M. Jonza, M. F. Weber, A. J. Ouderkirk, and C. A. Stover, “Polarizing beam-splitting optical component,” U.S. Patent 5,962,114 (5 October, 1999).
  4. G. P. Bryan-Brown and J. R. Sambles, “Polarization conversion through the excitation of surface plasmons on a metallic grating,” J. Mod. Opt. 37, 1227-1232 (1990). [CrossRef]
  5. N. Passilly, K. Ventola, P. Karvinen, P. Laakkonen, J. Turunen, and J. Tervo, “Polarization conversion in conical diffraction by metallic and dielectric subwavelength gratings,” Appl. Opt. 46, 4258-4265 (2007). [CrossRef] [PubMed]
  6. S. J. Elston, G. P. Bryan-Brown, T. W. Preist and J. R. Sambles, “Surface-resonance polarization conversion mediated by broken surface symmetry,” Phys. Rev. B 44, 3483-3485 (1991). [CrossRef]
  7. Y. L. Kok and N. C. Gallagher, “Relative phases of electromagnetic waves diffracted by a perfectly conducting rectangular-grooved grating,” J. Opt. Soc. Am. A 5, 65-73 (1988). [CrossRef] [PubMed]
  8. C. W. Haggans, L. Li, and T. Fujita, “Lamellar gratings as polarization components for specularly reflected beams,” J. Mod. Opt. 40, 675-686 (1993). [CrossRef]
  9. S. R. Seshadri, “Polarization conversion by reflection in a thin-film grating,” J. Opt. Soc. Am. A 18, 1765-1776 (2001). [CrossRef]
  10. I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on narrow-ridged short-pitch metal gratings in the conical mount,” J. Opt. Soc. Am. A 20, 836-843 (2003). [CrossRef]
  11. I. R. Hooper and J. R. Sambles, “Broadband polarization-converting mirror for the visible region of the spectrum,” Opt. Lett. 27, 2152-2154 (2002). [CrossRef]
  12. C. C. Tsai and S. T. Wu, “Study of broadband polarization conversion with metallic surface-relief gratings by rigorous coupled-wave analysis,” J. Opt. Soc. Am. A (to be published).
  13. A. V. Kats and I. S. Spevak, “Analytical theory of resonance diffraction and transformation of light polarization,” Phys. Rev. B 65, 195406 (2002). [CrossRef]
  14. I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on a narrow-ridged short-pitch metal gratings,” Phys. Rev. B 66, 205408 (2002). [CrossRef]
  15. J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings--a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. A 72, 839-846 (1982). [CrossRef]
  16. Y. Okuno, “The mode-matching method,” in Analysis Methods for Electromagnetic Wave Problems, E. Yamashita, ed. (Artech House, 1990), pp. 107-138.
  17. T. Suyama, Y. Okuno, and T. Matsuda, “Enhancement of TM-TE mode conversion caused by excitation of surface plasmons on a metal grating and its application for refractive index measurement,” Prog. Electromagn. Res. PIER 72, 91-103 (2007). [CrossRef]
  18. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068-1076(1995). [CrossRef]
  19. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077-1086 (1995). [CrossRef]
  20. P. C. Logofatu, S. A. Coulombe, B. K. Minhas, and J. R. McNeil, “Identity of the cross-reflection coefficients for symmetric surface-relief gratings,” J. Opt. Soc. Am. A 16, 1108-1114 (1999). [CrossRef]
  21. D.-E. Yi, Y.-B. Yan, H.-T. Liu, S. Lu, and G.-F Jin, “Broadband achromatic phase retarder by subwavelength grating,” Opt. Commun. 227, 49-55 (2003). [CrossRef]
  22. E. D. Palik, Handbook of Optical Constants (Academic, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited