OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 16 — Jun. 1, 2008
  • pp: 2941–2949

White-light interferometry on rough surfaces—measurement uncertainty caused by surface roughness

Pavel Pavliček and Ondřej Hýbl  »View Author Affiliations


Applied Optics, Vol. 47, Issue 16, pp. 2941-2949 (2008)
http://dx.doi.org/10.1364/AO.47.002941


View Full Text Article

Enhanced HTML    Acrobat PDF (1768 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

White-light interferometry measuring an optically rough surface commonly does not resolve the lateral structure of the surface. This means that there are height differences within one resolution cell that exceed one-fourth of the wavelength of the light used. Thus the following questions arise: Which height is measured by white-light interferometry? How does the surface roughness affect the measurement uncertainty? The goal of the presented paper is to answer these questions by means of numerical simulations. Before the aforementioned questions can be answered, the distribution of the intensity of individual speckles, the influence of surface roughness, and the spectral width of the light source used are discussed.

© 2008 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(030.6600) Coherence and statistical optics : Statistical optics
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: February 28, 2008
Revised Manuscript: April 16, 2008
Manuscript Accepted: April 18, 2008
Published: May 21, 2008

Citation
Pavel Pavliček and Ondřej Hýbl, "White-light interferometry on rough surfaces--measurement uncertainty caused by surface roughness," Appl. Opt. 47, 2941-2949 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-16-2941


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. S. Kino and S. S. C. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775-3783 (1990). [CrossRef] [PubMed]
  2. B. S. Lee and T. C. Strand, “Profilometry with a coherence scanning microscope,” Appl. Opt. 29, 3784-3788 (1990). [CrossRef] [PubMed]
  3. K. G. Larkin, “Efficient nonlinear algorithm for envelope detection in white light interferometry,” J. Opt. Soc. Am. A 13, 832-843 (1996). [CrossRef]
  4. G. Häusler, P. Ettl, M. Schenk, G. Bohn, and I. Laszlo, “Limits of optical range sensors and how to exploit them,” in International Trends in Optics and Photonics ICO IV, T. Asakura, ed., Springer Series in Optical Sciences (Springer-Verlag, 1999), Vol. 74, pp. 328-342.
  5. T. Dresel, G. Häusler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919-925 (1992). [CrossRef] [PubMed]
  6. G. Häusler, “Speckle and Coherence,” Encyclopedia of Modern Optics, B. D. Guenther, ed. (Academic, 2005), pp. 114 - 123. [CrossRef]
  7. P. Ettl, B. Schmidt, M. Schenk, I. Laszlo, and G. Häusler, “Roughness parameters and surface deformation measured by 'Coherence Radar',” Proc. SPIE 3407, 133-140 (1998). [CrossRef]
  8. J. W. Goodman, “Statistical properties of laser speckle patterns,” Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1984), pp. 9-75.
  9. J. W. Goodman, “Speckle with finite number of steps,” Appl. Opt. 47, A111-A118 (2008). [CrossRef] [PubMed]
  10. S. G. Rabinovich, Measurement Errors and Uncertainties (Springer-Verlag, 2000).
  11. T. Dresel, “Grundlagen und Grenzen der 3D-Datengewinnung mit dem Kohärenzradar,” Master's thesis (University Erlangen-Nuremberg, 1991).
  12. P. Ettl, “Über die Signalentstehung bei Weißlichtinterferometrie,” Ph.D. dissertation (University Erlangen-Nuremberg, 2001).
  13. C. Richter, B. Wiesner, R. Groß, and G. Häusler, “White-light interferometry with higher accuracy and more speed,” in Proceedings of Fringe 2005, The 5th International Workshop on Automatic Processing of Fringe Patterns, W. Osten, ed. (Springer-Verlag, 2005), pp. 605-612.
  14. P. Pavliček and J. Soubusta, “Theoretical measurement uncertainty of white-light interferometry on rough surfaces,” Appl. Opt. 42, 1809-1813 (2003). [CrossRef] [PubMed]
  15. N. George and A. Jain, “Speckle reduction using multiple tones of illumination,” Appl. Opt. 12, 1202-1212 (1973). [CrossRef] [PubMed]
  16. A. Harasaki and J. C. Wyant, “Fringe modulation skewing effect in white-light vertical scanning interferometry,” Appl. Opt. 39, 2101-2106 (2000). [CrossRef]
  17. G. Parry, “Speckle patterns in partially coherent light,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1984), pp. 77-121.
  18. I. Yamaguchi, A. Yamamoto, and S. Kuwamura, “Speckle decorrelation in surface profilometry by wavelength scanning interferometry,” Appl. Opt. 37, 6721-6728 (1998). [CrossRef]
  19. R. Windecker and H. J. Tiziani, “Optical roughness measurements using extended white-light interferometry,” Opt. Eng. 38, 1081-1087 (1999). [CrossRef]
  20. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 2003).
  21. P. Lehmann, “Aspect ratio of elongated polychromatic far-field speckles of continuous and discrete spectral distribution with respect to surface roughness characterization,” Appl. Opt. 41, 2008-2014 (2002). [CrossRef] [PubMed]
  22. W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, 1992).
  23. R. Onodera, H. Watanebe, and Y. Ishii, “Interferometric phase-measurement using a one-dimensional discrete Hilbert transform,” Opt. Rev. 12, 29-36 (2005). [CrossRef]
  24. Z. Saraç, R. Groß, C. Richter, B. Wiesner, and G. Häusler, “Optimization of white light interferometry on rough surfaces based on error analysis,” Optik (Jena) 115, 351-357 (2004). [CrossRef]
  25. B. Wiesner and G. Häusler, “A new method to reduce the measuring uncertainty and the number of outliers in white-light interferometry,” in DGaO Proceedings (2005), http://www.dgao-proceedings.de.
  26. The distribution has been estimated based on 800 000 simulations. The number of scattering regions N=200.
  27. The random numbers used for the simulations have been generated by quantum random number generator developed in the Joint Laboratory of Optics, Olomouc: J. Soubusta, O. Haderka, M. Hendrych, and P. Pavliček, “Experimental realization of quantum random generator,” Proc. SPIE 5259, 7-13(2003). [CrossRef]
  28. P. Horváth, M. Hrabovský, and Z. Bača, “Statistical properties of a speckle pattern,” Proc. SPIE 4888, 99-108 (2002). [CrossRef]
  29. J. N. Kapur and H. C. Saxena, Mathematical Statistics (S. Chand & Company Ltd., 2006).
  30. The distribution has been estimated based on 40 000 simulations. The number of scattering regions N=200.
  31. R.-J. Recknagel and G. Notni, “Analysis of white light interferograms using wavelet methods,” Opt. Commun. 148, 122-128(1998). [CrossRef]
  32. P. Pavliček and J. Soubusta, “Measurement of the influence of dispersion on white-light interferometry,” Appl. Opt. 43, 766-770 (2004). [CrossRef] [PubMed]
  33. R. G. Dorsch, G. Häusler, and J. M. Herrmann, “Laser triangulation: fundamental uncertainty in distance measurement,” Appl. Opt. 33, 1306-1314 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited