OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 16 — Jun. 1, 2008
  • pp: 3002–3008

Effect of the number of sublayers on axial optics of anisotropic helical structures

I. Abdulhalim  »View Author Affiliations

Applied Optics, Vol. 47, Issue 16, pp. 3002-3008 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2554 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The transition from the continuously rotating dielectric ellipsoid approach to the discrete periodic collection of wave plates is investigated by comparing an exact analytic solution found using a Bloch–Lyaponov transformation on the 4 × 4 matrix form of Maxwell’s equations and the numerical solution. The validity of the analytic solution depends only on the number of sublayers within the unit cell and not on the number of periods in the sample. The circularly polarized Bragg-type selective reflection peak is shown to exist with helices containing as few as N l = 3 sublayers in a single period, but due to the appearance of higher Fourier harmonics in the dielectric tensor, additional selective reflection peaks appear. The case of N l = 4 corresponds to the folded Solc-type filter case with a twist angle of π / 4 , but it acts as a reflection filter for unpolarized light. Hence using this fact with liquid crystalline structures, polarization insensitive tunable filters can be built.

© 2008 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Physical Optics

Original Manuscript: February 25, 2008
Manuscript Accepted: March 26, 2008
Published: May 22, 2008

I. Abdulhalim, "Effect of the number of sublayers on axial optics of anisotropic helical structures," Appl. Opt. 47, 3002-3008 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, 1993).
  2. G. T. Pickett, M. Gross, and H. Okuyama, “Spontaneous chirality in simple systems,” Phys. Rev. Lett. 85, 3652-3655 (2000). [CrossRef] [PubMed]
  3. S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56-58 (1991). [CrossRef]
  4. T. W. Ebbesen and P. M. Ajayan, “Large scale synthesis of carbon nanotubes,” Nature 358, 220-222 (1992). [CrossRef]
  5. T. W. Odom, J.-L. Huang, P. Kim, and C. M. Lieber, “Atomic structure and electronic properties of single-walled carbon nanotubes,” Nature 391, 62-64 (1998). [CrossRef]
  6. L. Zhang, E. Ruh, D. Grutzmacher, D. J. Bell, B. J. Nelson, and C. Schonenberger, “Anomalous coiling of SiGe/Si and SiGe/Si/Cr helical nanobelts,” Nano Lett. 6, 1311-1317 (2006). [CrossRef] [PubMed]
  7. D. Bimberg, N. N. Ledentsov, M. Grundmann, N. Kirstaedter, O. G. Schmidt, M. H. Mao, M. V. Ustinov, A. Yu. Egorov, A. E Zhukov, P. S. Kopev, Z. I. Alferov, S. S. Ruvimov, U. Gosele, and J. Heydenreich, “InAs-GaAs quantum dots: from growth to lasers,” Phys. Status Solidi B 194, 159-173 (1996). [CrossRef]
  8. K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384, 616-618 (1996). [CrossRef]
  9. H. Lodish, A. Berk, L. S. Zipursky, P. Matsudaira, D. Baltimore, and J. Darnell, Molecular Cell Biology, 4th ed. (Freeman, 2000).
  10. M. Land, “Old twist in a new tale,” Nature 363, 581-582(1993). [CrossRef]
  11. R. Wehner and G. D. Bernard, “Photoreceptor twist: a solution to the false-color problem,” Proc. Natl. Acad. Sci. USA 90, 4132-4135 (1993). [CrossRef] [PubMed]
  12. J. S. Patel, M. A. Saifi, D. W. Berreman, C. Lin, N. Andreadakis, and S.-D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid crystals in a Fabry-Perot etalon,” Appl. Phys. Lett. 57, 1718-1720 (1990). [CrossRef]
  13. I. J. Lalov and A. I. Miteva, “Optically active Fabry-Perot etalon,” J. Mod. Opt. 38, 395-411 (1991). [CrossRef]
  14. M. P. Silverman and J. Badoz, “Interferometric enhancement of chiral asymmetries: ellipsometry with an optically active Fabry-Perot interferometer,” J. Opt. Soc. Am. A 11, 1894-1917 (1994). [CrossRef]
  15. V. I. Kopp, B. Fan, and H. K. M. Vithana, “Low threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23, 1707-1709 (1998). [CrossRef]
  16. Z. Zhuang and J. S. Patel, “Behavior of cholesteric liquid crystal in a Fabry-Perot cavity,” Opt. Lett. 24, 1759-1761 (1999). [CrossRef]
  17. Z. Zhuang, Y. J. Kim, and J. S. Patel, “Behavior of the cholesteric liquid crystal Fabry-Perot cavity in the Brag reflection band,” Phys. Rev. Lett. 84, 1168-1170 (2000). [CrossRef] [PubMed]
  18. D. W. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation,” J. Opt. Soc. Am. 61, 502-510 (1972). [CrossRef]
  19. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  20. H. L. De Vries, “Rotatory power and other optical properties of certain liquid crystals,” Acta Cryst. 4, 219-226 (1951). [CrossRef]
  21. O. Parodi, “Light propagation along the helical axis in chiral. smectics C,” J. Phys. Colloq. 36, 325-326 (1975). [CrossRef]
  22. I. Abdulhalim, “Light propagation along the helix of chiral smectics and twisted nematics,” Opt. Commun. 64, 443-448(1987). [CrossRef]
  23. I. Abdulhalim, “Unique optical properties of anisotropic helical structures in Fabry-Perot cavity,” Opt. Lett. 31, 3019-3021(2006). [CrossRef] [PubMed]
  24. I. Abdulhalim, “Point of ultra-sensitivity to perturbations for axial propagation in helicoidal bianisotropic structures,” Europhys. Lett. 48, 177-181 (1999). [CrossRef]
  25. I. Abdulhalim, L. Benguigui, and R. Weil, “Selective reflection by helicoidal liquid crystals: results of an exact calculation using the 4×4 characteristic matrix method,” J. Phys. (Paris) 46, 815-825 (1985). [CrossRef]
  26. I. Abdulhalim, “Analytic propagation matrix method for linear optics of arbitrary biaxial layered media,” J. Opt. A 1, 646-653(1999). [CrossRef]
  27. A. Lakhtakia and W. S. Weiglhofer, “On light propagation in helicoidal bianisotropic media,” Proc. R. Soc. London Ser. A 448, 419-437 (1995). [CrossRef]
  28. I. Hodgkinson, Q. H. Wu, L. De Silva, M. Arnold, A. Lakhtakia, and M. McCall, “Structurally perturbed chiral Bragg reflectors for elliptically polarized light,” Opt. Lett. 30, 2629-2631(2005). [CrossRef] [PubMed]
  29. A. Figotin and I. Vitebskiy, “Gigantic transmission band-edge resonance in periodic stacks of anisotropic layers,” Phys. Rev. E 72, 036619-036632 (2005). [CrossRef]
  30. I. Abdulhalim, “Omnidirectional reflection from anisotropic periodic dielectric stack,” Opt. Commun. 174, 43-50 (2000). [CrossRef]
  31. I. Abdulhalim and L. Benguigui, “Optics of chiral smectic liquid crystals near Lifshitz point,” Phys. Rev. A 42, 2114-2125 (1990). [CrossRef] [PubMed]
  32. I. Muševic, R. Blinc, and B. Zekš, The Physics of Ferroelectric and Antiferroelectric Liquid Crystals (World Scientific, 2000), p. 200.
  33. S. Elston and R. Sambles, The Optics Of Thermotropic Liquid Crystals (Taylor and Francis, 1998).
  34. N. W. Roberts, H. F. Gleeson, N. Bowring, A. Seed, L. N. Nassif, M. R. Herbert, J. W. Goodby, and M. Hird, “An experimental and theoretical investigation into the reflection spectra of SmC* and SmC*A phases,” J. Mater. Chem. 13, 353-359(2003). [CrossRef]
  35. I. Abdulhalim, L. Benguigui, and R. Weil, “Light transmission measurements in the liquid crystal SMC* phase of DOBAMBC at normal incidence,” J. Phys. (Paris) 46, 1429-1433 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited