OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 17 — Jun. 10, 2008
  • pp: 3100–3108

Femtosecond laser micromachining of waveguides in silicone-based hydrogel polymers

Li Ding, Richard I. Blackwell, Jay F. Künzler, and Wayne H. Knox  »View Author Affiliations

Applied Optics, Vol. 47, Issue 17, pp. 3100-3108 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (8254 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By tightly focusing 27 fs laser pulses from a Ti:sapphire oscillator with 1.3 nJ pulse energy at 93 MHz repetition rate, we are able to fabricate optical waveguides inside hydrogel polymers containing 36 % water by weight. A tapered lensed fiber is used to couple laser light at a wavelength of 632.8 nm into these waveguides within a water environment. Strong waveguiding is observed due to large refractive index changes. A large waveguide propagation loss is found, and we show that this is caused by surface roughness which can be reduced by optimizing the waveguides.

© 2008 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(230.7370) Optical devices : Waveguides
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Optical Devices

Original Manuscript: February 29, 2008
Revised Manuscript: May 10, 2008
Manuscript Accepted: May 15, 2008
Published: June 2, 2008

Virtual Issues
Vol. 3, Iss. 7 Virtual Journal for Biomedical Optics

Li Ding, Richard I. Blackwell, Jay F. Künzler, and Wayne H. Knox, "Femtosecond laser micromachining of waveguides in silicone-based hydrogel polymers," Appl. Opt. 47, 3100-3108 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. S. Walker, K. Balasubramanian, and W. M. Reichert, “Low loss HEMA/EMA copolymer waveguides with a range of wetting and optical properties,” J. Appl. Poly. Sci. 49, 2147-2155 (1993). [CrossRef]
  2. D. S. Walker, M. D. Garrison, and W. M. Reichert, “Protein absorption to HEMA/EMA copolymers studied by integrated optical techniques,” J. Coll. Inter. Sci. 157, 41-49 (1993).n [CrossRef]
  3. J. S. Koo, P. G. R. Smith, R. B. Williams, M. C. Grossel, and M. J. Whitcombe, “Synthesis and characterization of methacrylate-based copolymers for integrated optical applications,” Chem. Mater. 14, 5030-5036 (2002). [CrossRef]
  4. Y. J. Lee, S. A. Pruzinsky, and P. V. Braun, “Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response,” Langmuir 20, 3096-3106 (2004). [CrossRef]
  5. Y. J. Lee, and P. V. Braun, “Tunable inverse opal hydrogel pH sensors,” Adv. Mater. 15, 563-566 (2003). [CrossRef]
  6. P. Friis, K. Hoppe, O. Leistiko, K. B. Mogensen, J. Hubner, and J. P. Kutter, “Monolithic integration of microfluidic channels and optical waveguides in silica on silicon,” Appl. Opt. 40, 6246-6251 (2001). [CrossRef]
  7. Z. Wang, J. El-Ali, M. Engelund, T. Gotsad, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4, 372-377 (2004). [CrossRef] [PubMed]
  8. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93-95 (2001). [CrossRef]
  9. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24, 1311-1313 (1999). [CrossRef]
  10. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729-1731 (1996). [CrossRef] [PubMed]
  11. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator,” Opt. Express 13, 612-620 (2005). [CrossRef] [PubMed]
  12. Y. Nasu, M. Kohtoku, and Y. Hibino, “Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit,” Opt. Lett. 30, 723-725 (2005). [CrossRef] [PubMed]
  13. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt. Lett. 26, 1516-1518 (2001). [CrossRef]
  14. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, and R. Valle, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29, 748-750 (2004). [CrossRef] [PubMed]
  15. A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, “Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate),” Opt. Lett. 29, 1840-1842 (2004). [CrossRef] [PubMed]
  16. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14, 291-297 (2006). [CrossRef] [PubMed]
  17. C. R. Mendonca, L. R. Cerami, T. Shih, R. W. Tilghman, T. Baldacchini, and E. Mazur, “Femtosecond laser waveguide micromachining of PMMA films with azoaromatic chromophores,” Opt. Express 16, 200-206 (2008). [CrossRef] [PubMed]
  18. L. Ding, R. Blackwell, J. F. Künzler, and W. H. Knox, “Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining,” Opt. Express 14, 11901-11909 (2006). [CrossRef] [PubMed]
  19. C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVision, Focus Night&Day and conventional hydrogel contact lens,” Appl. Surf. Sci. 230, 106-114 (2004). [CrossRef]
  20. A. M. Streltsov, and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B 19, 2496-2504 (2002). [CrossRef]
  21. C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351-354 (2003). [CrossRef]
  22. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708-4716 (2005). [CrossRef] [PubMed]
  23. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl, Phys. B 81, 1015-1047 (2005). [CrossRef]
  24. C. B. Schaffer, N. Nishimura, E. N. Glezer, A. Kim, and E. Mazur, “Dynamic of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196-203 (2002).
  25. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271-280(1999). [CrossRef]
  26. D. X. Hammer, E. D. Jansen, M. Frenz, G. D. Noojin, R. J. Thomas, J. Noack, A. Vogel, B. A. Rockwell, and A. J. Welch, “Shielding properties of laser-induced breakdown in water for pulse duration from 5 ns to 125 fs,” Appl. Opt. 36, 5630-5640 (1997). [CrossRef] [PubMed]
  27. D. Gloge, “Bending loss in multimode fibers with graded and ungraded cor index,” Appl. Opt. 11, 2506-2513 (1972). [CrossRef] [PubMed]
  28. M. Popovic, in Integrated Photonics Research (Optical Society of America, 2003), pp. 143-145.
  29. G. Agrawal, Lightwave Technology: Components and Devices (Wiley, 2004).
  30. D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79, 605-612 (2004). [CrossRef]
  31. F. Ladouceur, “Roughness, inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020-1025 (1997). [CrossRef]
  32. J. P. R. Lacey, and F. P. Payne, “Radiation loss from planar wave-guides with random wall imperfections,” Proc. Inst. Elect. Eng. 137, 282-288 (1990).
  33. F. P. Payne, and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum. Electron. 26, 977-986 (1994). [CrossRef]
  34. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888-1890 (2001). [CrossRef]
  35. F. Grillot, L. Vivien, S. Laval, and E. Cassan, “Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides,” J. Lightwave Technol. 24, 891-896 (2006). [CrossRef]
  36. D. Day, and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express 13, 5939-5946 (2005). [CrossRef] [PubMed]
  37. M. Born, and E. Wolf, Principle of Optics (Pergamon, 1970).
  38. L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, R. I. Blackwell, D. Jani, and J. F. Kunzler, “Raman spectroscopic study of silicone-based hydrogel polymers with large index changes induced by femtosecond laser micromachining,” in Conference on Laser and Electro Optics (CLEO) (Optical Society of America, 2008).
  39. L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, N. Anderson, D. Jani, R. I. Blackwell, and J. F. Kunzler, “Micro-Raman spectroscopic study of silicone-based hydrogel polymers modified by megahertz femtosecond laser pulses,” to be submitted.
  40. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26, 1726-1728 (2001). [CrossRef]
  41. S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo, and H. Misawa, “Reversible phase transitions in polymer gels induced by radiation forces,” Nature 408, 178-181(2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited