OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 18 — Jun. 20, 2008
  • pp: 3254–3257

Low-loss polymers for terahertz applications

Alexander Podzorov and Guilhem Gallot  »View Author Affiliations

Applied Optics, Vol. 47, Issue 18, pp. 3254-3257 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (539 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have performed high-precision terahertz time-domain spectroscopy measurements on polymers (cross-linked polystyrene, TPX, Zeonor) from 0.2 to 4.2 THz . They show very interesting terahertz and visible transparency. We also investigated the terahertz characteristics of PDMS, a polymer extensively used in microfluidics, which showed absorption compatible with terahertz experiments. The thermoplastic properties of these polymers make them suitable for use as lens, window, waveguide, or support materials in such applications as biological imaging or microfluidics necessitating a constant visual control not provided by conventional silicon- or teflon-based devices.

© 2008 Optical Society of America

OCIS Codes
(300.6250) Spectroscopy : Spectroscopy, condensed matter
(320.7150) Ultrafast optics : Ultrafast spectroscopy
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: March 25, 2008
Revised Manuscript: May 21, 2008
Manuscript Accepted: May 23, 2008
Published: June 12, 2008

Virtual Issues
Vol. 3, Iss. 7 Virtual Journal for Biomedical Optics

Alexander Podzorov and Guilhem Gallot, "Low-loss polymers for terahertz applications," Appl. Opt. 47, 3254-3257 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Grischkowsky, S. R. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006-2015 (1990). [CrossRef]
  2. Q. Chen, M. Tani, Z. Jiang, and X. C. Zhang, “Electro-optic transceiver for terahertz-wave applications,” J. Opt. Soc. Am. B 18, 823-831 (2001). [CrossRef]
  3. L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2, 739-746 (1996). [CrossRef]
  4. G. Gallot, J. Zhang, R. W. McGowan, T.-I. Jeon, and D. Grischkowsky, “Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation,” Appl. Phys. Lett. 74, 3450-3452 (1999). [CrossRef]
  5. J. Han, W. Zhang, W. Chen, L. Thamizhmani, A. K. Azad, and Z. Zhu, “Far-Infrared characteristics of ZnS nanoparticles measured by terahertz time-domain spectroscopy,” J. Phys. Chem. B 110, 1989-1993 (2006). [CrossRef] [PubMed]
  6. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376-379 (2004). [CrossRef] [PubMed]
  7. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006). [CrossRef] [PubMed]
  8. H. Cao, T. F. Heinz, and A. Nahata, “Electro-optic detection of femtosecond electromagnetic pulses by use of poled polymers,” Opt. Lett. 27, 775-777 (2002). [CrossRef]
  9. C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, M. Withers, P. F. Taday, V. P. Wallace, E. H. Linfield, A. G. Davies, and M. Missous, “Terahertz pulsed imaging with 1.06 mm laser excitation,” Appl. Phys. Lett. 83, 4113-4115(2003). [CrossRef]
  10. N. C. J. van der Valk and P. C. M. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81, 1558-1560 (2002). [CrossRef]
  11. J. Kitagawa, T. Ohkubo, M. Onuma, and Y. Kadoya, “THz spectroscopic characterization of biomolecule/water systems by compact sensor chips,” Appl. Phys. Lett. 89, 041114 (2006). [CrossRef]
  12. A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M. A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol. 47, R67-R84 (2002). [CrossRef] [PubMed]
  13. R. Mendis, “Nature of subpicosecond terahertz pulse propagation in practical dielectric-filled parallel-plate waveguides,” Opt. Lett. 31, 2643-2645 (2006). [CrossRef] [PubMed]
  14. J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” J. Opt. Soc. Am. B 21, 1379-1386 (2004). [CrossRef]
  15. M. Naftalya and R. E. Miles, “Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties,” J. Appl. Phys. 102, 043517 (2007). [CrossRef]
  16. D. R. Smith and E. V. Loewenstein, “Optical constants of far infrared materials. 3: plastics,” App. Opt. 14, 1335-1341 (1975). [CrossRef]
  17. J. R. Birch, “The far-infrared optical constants of polypropylene, PTFE and polystyrene,” Infrared Phys. 33, 33-38 (1992). [CrossRef]
  18. G. W. Chantry, J. W. Fleming, and P. M. Smith, “Far-infrared and millimetre-wave absorption spectra of some low-loss polymers,” Chem. Phys. Lett. 10, 473-476 (1971). [CrossRef]
  19. S. C. Nemat-Nasser, A. V. Amirkhizi, W. J. Padilla, D. N. Basov, S. Nemat-Nasser, D. Bruzewicz, and G. Whitesides, “Terahertz plasmonic composites,” Phys. Rev. E 75, 036614 (2007). [CrossRef]
  20. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, 1992).
  21. www.Goodfellow.com.
  22. R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Krner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millim. Waves 28, 363-371 (2007). [CrossRef]
  23. M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95, 1658-1665 (2007).
  24. www.zeonchemicals.com.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited