OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 18 — Jun. 20, 2008
  • pp: 3275–3288

Protein reactions with surface-bound molecular targets detected by oblique-incidence reflectivity difference microscopes

J. P. Landry, Y. S. Sun, X. W. Guo, and X. D. Zhu  »View Author Affiliations


Applied Optics, Vol. 47, Issue 18, pp. 3275-3288 (2008)
http://dx.doi.org/10.1364/AO.47.003275


View Full Text Article

Enhanced HTML    Acrobat PDF (13336 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We applied oblique-incidence reflectivity difference microscopes (a form of polarization-modulated nulling ellipsometry) to detection of biomolecular microarrays without external labeling in a study of protein reactions with surface-immobilized targets. We show that the optical reflectivity difference signals can be quantitatively related to changes in surface mass density of molecular layers as a result of the reactions. Our experimental results demonstrate the feasibility of using oblique-incidence reflectivity difference microscopes for high-throughput proteomics research such as screening unlabeled protein probes against libraries of surface-immobilized small molecules.

© 2008 Optical Society of America

OCIS Codes
(170.5810) Medical optics and biotechnology : Scanning microscopy
(240.2130) Optics at surfaces : Ellipsometry and polarimetry

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: February 4, 2008
Revised Manuscript: May 7, 2008
Manuscript Accepted: May 9, 2008
Published: June 11, 2008

Virtual Issues
Vol. 3, Iss. 7 Virtual Journal for Biomedical Optics

Citation
J. P. Landry, Y. S. Sun, X. W. Guo, and X. D. Zhu, "Protein reactions with surface-bound molecular targets detected by oblique-incidence reflectivity difference microscopes," Appl. Opt. 47, 3275-3288 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-18-3275


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Kodadek, “Protein microarrays: prospects and problems,” Chem. Biol. 8, 105-115 (2001).
  2. G. MacBeath, “Protein microarrays and proteomics,” Nat. Genet. 32, 526-532 (2002).
  3. M. Schena, Microarray Analysis (Wiley, 2003).
  4. B. B. Haab, M. J. Dunham, and P. O. Brown, “Protein microarrays for highly parallel detection and quantification of specific proteins and antibodies in complex solutions,” Genome Biol. 2, research0004.1 (2001). [CrossRef]
  5. J. C. Milleret al., “Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers,” Proteomics 3, 56-63 (2003).
  6. Q. Xu, S. Miyamoto, and K. S. Lam, “A novel approach to chemical microarray using ketone-modified macromolecular scaffolds: application in micro cell-adhesion assay,” Mol. Divers. 8, 301-310 (2004).
  7. S. P. Gygiet al., “Correlation between protein and mRNA abundance in yeast,” Mol. Cell Biol. 19, 1720-1730 (1999).
  8. G. MacBeath and S. L. Schreiber, “Printing proteins as microarrays for high-throughput function determination,” Science 289, 1760-1763 (2000).
  9. H. Zhuet al., “Global analysis of protein activities using proteome chips,” Science 293, 2101-2105 (2001). [CrossRef]
  10. J. P. Landry, X. D. Zhu, J. P. Gregg and X. W. Guo, “Detection of biomolecular microarrays without fluorescent-labeling agents,” in Microarrays and Combinatorial Techniques: Design, Fabrication, and Analysis II, D. V. Nicolau and R. Raghavachari, eds., Proc. SPIE 5328, 121-128 (2004).
  11. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1987).
  12. H. Arwin, “Ellipsometry,” in ,Physical Chemistry of Biological Interfaces, A. Baszkin and W. Norde, eds. (Marcel Dekker, 2000), pp. 577-607.
  13. A. Wong and X. D. Zhu, “An optical differential reflectance study of adsorption and desorption of xenon and deuterium on Ni(111),” Appl. Phys. A 63, 1-8 (1996).
  14. X. D. Zhuet al., “Epitaxial growth of SrTiO3 on SrTiO3(001) using an oblique-incidence reflectance-difference technique,” Phys. Rev. B 57, 2514-2519 (1998).
  15. P. Thomaset al., “An oblique-incidence optical reflectivity difference and LEED study of rare-gas growth on a lattice-mismatched metal substrate,” Appl. Phys. A 79, 131-137(2004).
  16. W. Schwarzacher, J. Gray, and X. D. Zhu, “Oblique incidence reflectivity difference as an in situ probe of Co electrodeposition on polycrystalline Au,” Electrochem. Solid-State Lett. 6, C73-C76 (2003). [CrossRef]
  17. J. P. Landry, X. D. Zhu, and J. P. Gregg, “Label-free detection of microarrays of biomolecules by oblique-incidence reflectivity difference microscopy,” Opt. Lett. 29, 581-583 (2004). [CrossRef]
  18. X. D. Zhu, “Oblique-incidence optical reflectivity difference from a rough film of crystalline material,” Phys. Rev. B . 69, 115407-1-115407-5 (2004).
  19. J. P. Landry, J. Gray, M. K. O'Toole, and X. D. Zhu, “Incidence-angle dependence of optical reflectivity difference from an ultrathin film on solid surface,” Opt. Lett. 31, 531-533 (2006). [CrossRef]
  20. X. D. Zhu, “Comparison of two optical techniques for label-free detection of biomolecular microarrays on solids,” Opt. Commun. 259, 751-753 (2006). [CrossRef]
  21. H. A. Sober, ed., Handbook of Biochemistry (CRC, 1970).
  22. H. Fischer, I. Polikarpov, and A. F. Craievich, “Average protein density is a molecular-weight-dependent function,” Protein Sci. 13, 2825-2828 (2004). [CrossRef]
  23. J. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface,” Biopolymers 17, 1759-1772 (1978). [CrossRef]
  24. V. Ball and J. J. Ramsden, “Buffer dependence of refractive index increments of protein solutions,” Biopolymers 46, 489-492 (1998); [CrossRef]
  25. L. S. Junget al., “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636-5648 (1998). [CrossRef]
  26. B.A. Rozenberg, “Kinetics, thermodynamics and mechanism of reactions epoxy oligomers with amines,” in Epoxy Resins and Composites II Advances in Polymer Sciences, Vol. 75, K. Dušek, ed. (Springer-Verlag, 1986), pp. 115-165.
  27. C. G. Goelander and E. Kiss, “Protein adsorption on functionalized and ESCA-characterized polymer films studies by ellipsometry,” J. Colloid Interface Sci. 121, 240-253 (1988). [CrossRef]
  28. B. D. Fair and A. M. Jamieson, “Studies of protein adsorption on polystyrene latex surfaces,” J. Colloid Interface Sci. 77, 525-534 (1980). [CrossRef]
  29. A. Baszkin and D. J. Lyman, “The interaction of plasma proteins with polymers. I. Relationship between polymer surface energy and protein adsorption/desorption,” J. Biomed. Mater. Res. 14, 393-403 (1980). [CrossRef]
  30. W. A. Hendricksonet al., “Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation,” Proc. Natl. Acad. Sci. 86, 2190-2194 (1989).
  31. P. Weber, D. Ohlendorf, J. Wendoloski, and F. Salemme, “Structural origins of high-affinity biotin binding to streptavidin,” Science 243, 85-88 (1989). [CrossRef]
  32. X. D. Zhuet al., “Oblique-incidence reflectivity difference microscope for label-free high-throughput detection of biochemical reactions in microarray format,” Appl. Opt. 46, 1890-1895(2007). [CrossRef]
  33. J. L. Oncley, G. Scatchard, and A. Brown, “Physicochemical characteristics of certain of the proteins of normal human plasma,” J. Phys. Colloid Chem. 51, 184-198 (1947). [CrossRef]
  34. J. L. Oncley, “The investigation of proteins by dielectric measurements,” Chem. Rev. 30, 433-450 (1942). [CrossRef]
  35. A. K. Wright and M. R. Thompson, “Hydrodynamic structure of bovine serum albumin determined by transient electric birefringence,” Biophys. J. 15, 137-141 (1975).
  36. P. G. Squire, P. Moser, and C. T. O'Konski, “The hydrodynamic properties of bovine serum albumin monomer and dimer,” Biochemistry 7, 4261-4272 (1968).
  37. X. M. He and D. C. Carter, “Atomic structure and chemistry of human serum albumin,” Nature 358, 209-215 (1992).
  38. L. J. Harris, S. B. Larson, K. W. Hasel, and A. McPherson, “Refined structure of an intact IgG2a monoclonal antibody,” Biochemistry 36, 1581-1597 (1997).
  39. S. Sugioet al., “Crystal structure of human serum albumin at 2.5 Å° resolution,” Protein Eng. 12, 439-446 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited