OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 18 — Jun. 20, 2008
  • pp: 3369–3377

Reliability-guided phase unwrapping in wavelet-transform profilometry

Sikun Li, Wenjing Chen, and Xianyu Su  »View Author Affiliations


Applied Optics, Vol. 47, Issue 18, pp. 3369-3377 (2008)
http://dx.doi.org/10.1364/AO.47.003369


View Full Text Article

Enhanced HTML    Acrobat PDF (23108 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The phase unwrapping algorithm plays a very important role in many noncontact optical profilometries based on triangular measurement theory. Here we focus on discussing how to diminish the phase error caused by incorrect unwrapping path in wavelet transform profilometry. We employ the amplitude value map of wavelet transform coefficients at the wavelet-ridge position to identify the reliability of the phase data and the path of phase unwrapping. This means that the wrapped phase located at the pixel with the highest amplitude value will be selected as the starting point of the phase unwrapping, and that pixels with higher amplitude value will be unwrapped earlier. So the path of phase unwrapping is always in the direction of the pixel with highest amplitude value to the one with lowest amplitude value. Making full use of the amplitude information of wavelet coefficients at the wavelet-ridge position keeps the phase unwrapping error limited to local minimum areas even in the worst case. Computer simulations and experiments verify our theory.

© 2008 Optical Society of America

OCIS Codes
(100.2650) Image processing : Fringe analysis
(100.7410) Image processing : Wavelets
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(100.5088) Image processing : Phase unwrapping

ToC Category:
Image Processing

History
Original Manuscript: December 12, 2007
Revised Manuscript: May 19, 2008
Manuscript Accepted: May 20, 2008
Published: June 18, 2008

Citation
Sikun Li, Wenjing Chen, and Xianyu Su, "Reliability-guided phase unwrapping in wavelet-transform profilometry," Appl. Opt. 47, 3369-3377 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-18-3369


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt. 22, 3977-3982 (1983). [CrossRef] [PubMed]
  2. X. Su and W. Chen, “Fourier transform profilometry review,” Opt. Lasers Eng. 35, 263-284 (2001). [CrossRef]
  3. K. Qian, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt. 43, 2695-2702 (2004). [CrossRef]
  4. K. Qian, “Windowed Fourier transform method for demodulation of carrier fringes,” Opt. Eng. 43, 1472-1473 (2004). [CrossRef]
  5. W. Chen, X. Su, and Y. Cao, , “Method for eliminating zero spectrum in Fourier transform profilometry,” Opt. Lasers Eng. 43, 1267-1276 (2005). [CrossRef]
  6. J. Zhong and J. Weng, “Dilating Gabor transform for the fringe analysis of 3-D shape measurement,” Opt. Eng. 43, 895-899(2004). [CrossRef]
  7. A. Z. Abid, M. A. Gdeisat, and D. R. Burton, “Spatial fringe pattern analysis using the two-dimensional continuous wavelet transform employing a cost function,” Appl. Opt. 46, 6120-6126 (2007). [CrossRef] [PubMed]
  8. M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform,” Appl. Opt. 45, 8722-8732 (2006). [CrossRef] [PubMed]
  9. M. Afifi, A. Fassi-Fihri, M. Marjane, , “Paul wavelet-based algorithm for optical phase distribution evaluation,” Opt. Commun. 211, 47-51 (2002). [CrossRef]
  10. L. R. Watkins, S. M. Tan, and T. H. Barnes, “Determination of interferometer phase distributions by use of wavelets,” Opt. Lett. 24, 905-907 (1999). [CrossRef]
  11. J. Zhong and J. Weng, “Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilometry,” Appl. Opt. 43, 4993-4998 (2004). [CrossRef] [PubMed]
  12. J. Zhong and J. Weng, “Phase retrieval of optical fringe patterns from the ridge of a wavelet transform,” Opt. Lett. 30, 2560-2562 (2005). [CrossRef] [PubMed]
  13. J. Sun, W. Chen, and X. Su, “Study the measurement range of wavelet transform profilometry,” Acta Optica Sin. 27, 647-653 (2007).
  14. R. A. Carmona, W. L. Hwang, and B. Torresani, “Characterization of signals by the ridges of their wavelet transforms,” IEEE Trans. Signal Process. 45, 2586-2590 (1997). [CrossRef]
  15. A. Asundi and W. Zhou, “Fast phase-unwrapping algorithm based on a gray-scale mask and flood fill,” Appl. Opt. 37, 5416-5420 (1998). [CrossRef]
  16. J. M. Huntley, “Noise-immune phase unwrapping algorithm,” Appl. Opt. 28, 3268-3270 (1989). [CrossRef] [PubMed]
  17. R. Cusack, J. M. Huntley, and H. T. Goldrein, “Improved noise-immune phase-unwrapping algorithm,” Appl. Opt. 34, 781-789 (1995). [CrossRef] [PubMed]
  18. R. M. Goldstern, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry two dimensional phase unwrapping,” Radio Sci. 23, 713-720 (1988). [CrossRef]
  19. J. J. Gierloff, “Phase unwrapping by regions,” Proc. SPIE 818, 2-9 (1987).
  20. N. H. Ching, D. V. Rosenfeld, and M. Braun, “Two-dimensional phase unwrapping using a minimum spanning tree algorithm,” IEEE Trans. Image Process. 1, 355 (1992). [CrossRef]
  21. M. Takeda and T. Abe, “Phase unwrapping by a maximum cross-amplitude spanning tree algorithm: a comparative study,” Opt. Eng. 35, 2345-2351 (l996). [CrossRef]
  22. D. C. Ghiglia, G. A. Mastin, and L. A. Romero, “Cellular-automata method for phase unwrapping,” J. Opt. Soc. Am. A. 4, 267-280 (l987). [CrossRef]
  23. D. C. Ghiglia and L. A. Romero, “Minimum Lp-norm two-dimensional phase unwrapping,” J. Opt. Soc. Am. A 13, 1999-2013 (1996). [CrossRef]
  24. X. Su and W. Chen, “Reliability-guided phase unwrapping algorithm: a review,” Opt. Lasers Eng. 42, 245-261 (2004). [CrossRef]
  25. X. Su, G. V. Bally, and D. Vukicevic, “Phase-stepping grating profilometry: utilization of intensity modulation analysis in complex objects evaluation,” Opt. Commun. 98, 141-150(1993). [CrossRef]
  26. J. T. Judge, C. Quan, and P. J. Bryanston-Cross, “Holographic deformation measurements by Fourier transform technique with automatic phase unwrapping,” Opt. Eng. 31, 533-543(1992). [CrossRef]
  27. V. Srinivasan, H. C. Liu, and M. Halioua, “Automated phase measuring profilometry of 3-D diffuse objects,” Appl. Opt. 23, 3105-3108 (1984). [CrossRef] [PubMed]
  28. X. Su and L. Xue, “Phase unwrapping algorithm based on fringe frequency analysis in Fourier-transform profilometry,” Opt. Eng. 40, 637-643 (2001). [CrossRef]
  29. A. Durson, S. Ozder, and N. Ecevit, “Continuous wavelet transform analysis of projected fringe patterns,” Meas. Sci. Technol. 15, 1768-1772 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited