OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 19 — Jul. 1, 2008
  • pp: 3433–3445

Orthonormal polynomials in wavefront analysis: error analysis

Guang-ming Dai and Virendra N. Mahajan  »View Author Affiliations


Applied Optics, Vol. 47, Issue 19, pp. 3433-3445 (2008)
http://dx.doi.org/10.1364/AO.47.003433


View Full Text Article

Enhanced HTML    Acrobat PDF (3238 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Zernike circle polynomials are in widespread use for wavefront analysis because of their orthogonality over a circular pupil and their representation of balanced classical aberrations. However, they are not appropriate for noncircular pupils, such as annular, hexagonal, elliptical, rectangular, and square pupils, due to their lack of orthogonality over such pupils. We emphasize the use of orthonormal polynomials for such pupils, but we show how to obtain the Zernike coefficients correctly. We illustrate that the wavefront fitting with a set of orthonormal polynomials is identical to the fitting with a corresponding set of Zernike polynomials. This is a consequence of the fact that each orthonormal polynomial is a linear combination of the Zernike polynomials. However, since the Zernike polynomials do not represent balanced aberrations for a noncircular pupil, the Zernike coefficients lack the physical significance that the orthonormal coefficients provide. We also analyze the error that arises if Zernike polynomials are used for noncircular pupils by treating them as circular pupils and illustrate it with numerical examples.

© 2008 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.1010) Optical design and fabrication : Aberrations (global)
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices

ToC Category:
Wave-front Sensing

History
Original Manuscript: April 4, 2008
Manuscript Accepted: May 23, 2008
Published: June 23, 2008

Virtual Issues
Vol. 3, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Guang-ming Dai and Virendra N. Mahajan, "Orthonormal polynomials in wavefront analysis: error analysis," Appl. Opt. 47, 3433-3445 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-19-3433


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  2. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207-211 (1976). [CrossRef]
  3. V. N. Mahajan, Optical Imaging and Aberrations: Part II. Wave Diffraction Optics (SPIE, 2004).
  4. J. Y. Wang and D. E. Silva, “Wavefront interpretation with Zernike polynomials,” Appl. Opt. 19, 1510-1518 (1980). [CrossRef] [PubMed]
  5. C.-J. Kim, “Polynomial fit of interferograms,” Appl. Opt. 21, 4521-4525 (1982). [CrossRef] [PubMed]
  6. A. Prata, Jr., and W. V. T. Rusch, “Algorithm for computation of Zernike polynomials expansion coefficients,” Appl. Opt. 28, 749-754 (1989). [CrossRef] [PubMed]
  7. I. Powell, “Pupil exploration and wave-front-polynomial fitting of optical systems,” Appl. Opt. 34, 7986-7997 (1995). [CrossRef] [PubMed]
  8. C. Evans, R. E. Parks, P. J. Sullivan, and J. S. Taylor, “Visualization of surface figure by use of Zernike polynomials,” Appl. Opt. 34, 7815-7819 (1995). [CrossRef] [PubMed]
  9. H. van Brug, “Zernike polynomials as a basis for wave-front fitting in lateral shearing interferometry,” Appl. Opt. 36, 2788-2790 (1997). [CrossRef] [PubMed]
  10. B. Qi, H. Chen, and N. Dong, “Wavefront fitting of interferograms with Zernike polynomials,” Opt. Eng. 41, 1565-1569(2002). [CrossRef]
  11. T. M. Jeong, D-K. Ko, and J. Lee, “Method of reconstructing wavefront aberrations by use of Zernike polynomials in radial shearing interferometers,” Opt. Lett. 32, 232-234 (2007). [CrossRef] [PubMed]
  12. V. N. Mahajan, “Zernike polynomials and wavefront fitting,” in Optical Shop Testing, 3rd ed., D.Malacara, ed. (Wiley, 2007), pp. 498-546. [CrossRef]
  13. J. Y. Wang and J. K. Markey, “Modal compensation of atmospheric turbulence phase distortion,” J. Opt. Soc. Am. 68, 78-87 (1978). [CrossRef]
  14. G.-m. Dai, “Modal compensation of atmospheric turbulence with the use of Zernike polynomials and Karhunen-Loève functions,” J. Opt. Soc. Am. A 12, 2182-2193 (1995). [CrossRef]
  15. J. Liang, B. Grimm, S. Goelz, and J. Bille, “Objective measurement of the wave aberrations of the human eye with the use of a Hartmann-Shack wavefront sensor,” J. Opt. Soc. Am. A 11, 1949-1957 (1994). [CrossRef]
  16. J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873-2883 (1997). [CrossRef]
  17. V. N. Mahajan, “Strehl ratio for primary aberrations in terms of their aberration variance,” J. Opt. Soc. Am. 73, 860-861(1983). [CrossRef]
  18. M. P. Rimmer, C. M. King, and D. G. Fox, “Computer program for the analysis of interferometric test data,” Appl. Opt. 11, 2790-2796 (1972). [CrossRef] [PubMed]
  19. M. Melozzi and L. Pezzati, “Interferometric testing of annular apertures,” Proc. SPIE 1781, 241-248 (1992). [CrossRef]
  20. D. J. Fischer, J. T. O'Bryan, R. Lopez, and H. P. Stall, “Vector formulation for interferogram surface fitting,” Appl. Opt. 32, 4738-4743 (1993). [CrossRef] [PubMed]
  21. G.-m. Dai and V. N. Mahajan, “Zernike annular polynomials and atmospheric turbulence,” J. Opt. Soc. Am. A 24, 139-155 (2007). [CrossRef]
  22. http://scikits.com/KFacts.html.
  23. V. N. Mahajan and G.-m. Dai, “Orthonormal polynomials for hexagonal pupils,” Opt. Lett. 31, 2462-2464 (2006). [CrossRef] [PubMed]
  24. V. N. Mahajan and G.-m. Dai, “Orthonormal polynomials in wavefront analysis: analytical solution,” J. Opt. Soc. Am. A 24, 2994-3016 (2007). [CrossRef]
  25. G.-m. Dai and V. N. Mahajan, “Nonrecursive determination of orthonormal polynomials with matrix formulation,” Opt. Lett. 32, 74-76 (2007). [CrossRef]
  26. H. J. Wyatt, “The form of the human pupil,” Vision Res. 35, 2021-2036 (1995). [CrossRef] [PubMed]
  27. G.-m. Dai, Wavefront Optics for Vision Correction (SPIE, 2008). [CrossRef]
  28. K. N. LaFortune, R. L. Hurd, S. N. Fochs, M. D. Rotter, P. H. Pax, R. L. Combs, S. S. Olivier, J. M. Brase, and R. M. Yamamoto, “Technical challenges for the future of high energy lasers,” Proc. SPIE 6454, 1-11 (2007).
  29. W. Swantner, Optical Engineering Services, 433 Live Oak Loop NE, Albuquerque, N. Mex. (personal communication).
  30. S. R. Restaino, S. W. Teare, M. DiVittorio, G. C. Gilbreath, and D. Mozurkewich, “Analysis of the Naval Observatory Flagstaff Station 1 m telescope using annular Zernike polynomials,” Opt. Eng. 42, 2491-2495 (2003). [CrossRef]
  31. X. Hou, F. Wu, L. Yang, S. Wu, and Q. Chen, “Full aperture wavefront reconstruction from annular subaperture interferometric data by use of Zernike annular polynomials and a matrix method for testing large aspheric surfaces,” Appl. Opt. 45, 3442-3454 (2006). [CrossRef] [PubMed]
  32. X. Hou, F. Wu, L. Yang, and Q. Chen, “Comparison of annular wavefront interpretation with Zernike circle polynomials and annular polynomials,” Appl. Opt. 45, 8893-8901(2006). [CrossRef] [PubMed]
  33. W. Swantner and W. W. Chow, “Gram-Schmidt orthonormalization of Zernike polynomials for general aperture shapes,” Appl. Opt. 33, 1832-1837 (1994). [CrossRef] [PubMed]
  34. B. R. A. Nijboer, “The diffraction theory of optical aberrations. Part II: Diffraction pattern in the presence of small aberrations,” Physica 13, 605-620 (1947). [CrossRef]
  35. K. Nienhuis and B. R. A. Nijboer, “The diffraction theory of optical aberrations. Part III: General formulae for small aberrations: experimental verification of the theoretical results,” Physica 14, 590-608 (1949). [CrossRef]
  36. A. Björck, Numerical Methods for Least Squares Problems (Cambridge University, 1996). [CrossRef]
  37. W. H. Press, S. A. Teukolsky, W. Vetterling, and B. P. Flannery, Numerical Recipes in C++ (Cambridge University, 2002). [PubMed]
  38. V. N. Mahajan, “Zernike annular polynomials and optical aberrations of systems with annular pupils,” Appl. Opt. 33, 8125-8127 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited