OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 19 — Jul. 1, 2008
  • pp: 3467–3480

Polarization of skylight in the O 2 A band: effects of aerosol properties

Eyk Boesche, Piet Stammes, Réne Preusker, Ralf Bennartz, Wouter Knap, and Juergen Fischer  »View Author Affiliations


Applied Optics, Vol. 47, Issue 19, pp. 3467-3480 (2008)
http://dx.doi.org/10.1364/AO.47.003467


View Full Text Article

Enhanced HTML    Acrobat PDF (4395 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Motivated by several observations of the degree of linear polarization of skylight in the oxygen A ( O 2 A ) band that do not yet have a quantitative explanation, we analyze the influence of aerosol altitude, microphysics, and optical thickness on the degree of linear polarization of the zenith skylight in the spectral region of the O 2 A band, between 755 to 775 nm . It is shown that the degree of linear polarization inside the O 2 A band is particularly sensitive to aerosol altitude. The sensitivity is strongest for aerosols within the troposphere and depends also on their microphysical properties and optical thickness. The polarization of the O 2 A band can be larger than the polarization of the continuum, which typically occurs for strongly polarizing aerosols in an elevated layer, or smaller, which typically occurs for depolarizing aerosols or cirrus clouds in an elevated layer. We show that in the case of a single aerosol layer in the atmosphere a determination of the aerosol layer altitude may be obtained. Furthermore, we show limitations of the aerosol layer altitude determination in case of multiple aerosol layers. To perform these simulations we developed a fast method for multiple scattering radiative transfer calculations in gaseous absorption bands including polarization. The method is a combination of doubling-adding and k-binning methods. We present an error estimation of this method by comparing with accurate line-by-line radiative transfer simulations. For the O 2 A band, the errors in the degree of linear polarization are less than 0.11% for transmitted light, and less than 0.31% for reflected light.

© 2008 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(260.5430) Physical optics : Polarization
(280.1310) Remote sensing and sensors : Atmospheric scattering
(300.1030) Spectroscopy : Absorption

ToC Category:
Atmospheric and oceanic optics

History
Original Manuscript: February 4, 2008
Manuscript Accepted: May 8, 2008
Published: June 24, 2008

Citation
Eyk Boesche, Piet Stammes, Réne Preusker, Ralf Bennartz, Wouter Knap, and Juergen Fischer, "Polarization of skylight in the O2A band: effects of aerosol properties," Appl. Opt. 47, 3467-3480 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-19-3467


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Stammes, F. Kuik, and J. F. De Haanlsquor “Atmospheric polarization in the oxygen A and B bands,” in Proceedings of Progress in Electromagnetic Research Symposium (PIERS), B. Arbesser-Rastburg, eds. (Kluwer Academic, 1994), pp. 2255-2259. ISBN: 0-7923-3019-6
  2. R. Preusker, U. Boetger, and J. Fischer, “Spectral and bidirectional measurements of the Stokes vector in the O2A band and their interpretation,” Proc. SPIE 2582, 13-20 (1995).
  3. I. Aben, F. Helderman, D. M. Stam, and P. Stammes, “High-spectral resolution polarization measurements of the atmosphere with the GOME-BBM,” Proc. SPIE 3121, 446-453(1997).
  4. I. Aben, F. Helderman, D. M. Stam, and P. Stammes, “Spectral fine-structure in the polarisation of skylight,” Geophys. Res. Lett. 26, 591-594 (1999). [CrossRef]
  5. D. Stam, J. F. De Haan, J. W. Hovenier, and P. Stammes, “The degree of linear polarization of light emerging from the cloudless atmosphere in the O2A band,” J. Geophys. Res. 104, 16843-16858 (1999). [CrossRef]
  6. R. Bennartz and R. Preusker, “k-binning: a new approach to simulate narrow band satellite channels in layered atmospheres with variable gas absorption,” submitted to J. Quant. Spectrosc. Radiat. Transfer (2007).
  7. R. Bennartz and J. Fischer, “A modified k-distribution approach applied to narrow band water vapour and oxygen absorption estimates in the near infrared,” J. Quant. Spectrosc. Radiat. Transfer 66, 539-553 (2000). [CrossRef]
  8. S. Chandrasekhar, Radiative Transfer (Dover, 1960).
  9. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  10. W. A. Shurcliff, Polarized Light (Harvard U., 1962).
  11. J. W. Hovenier, C. Van der Mee, and H. Domke, Transfer of Polarized Light in Planetary Atmospheres (Kluwer, 2004).
  12. W. A. De Rooij, and C. C. A. H. van der Stap, “Expansion of Mie scattering matrices in generalized spherical functions,” Astron. Astrophys. 131, 237-248 (1984).
  13. M. Hess, R. B. A. Koelemeijer, and P. Stammes, “Scattering matrices of imperfect hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 60, 301-308 (1998). [CrossRef]
  14. J. F. De Haan, P. B. Bosma, and J. W. Hovenier, “The adding method for multiple scattering calculations of polarized light,” Astron. Astrophys. 183, 371-391 (1987).
  15. P. Stammes, “Spectral radiance modelling in the UV-visible range,” in IRS 2000: Current Problems in Atmospheric Radiation, W. L. Smith and Y. M. Timofeyev, eds. (Deepak, 2001), pp. 385-388.
  16. P. Stammes, J. F. De Haan, and J. W. Hovenier, “The polarized internal radiation field of a planetary atmosphere,” Astron. Astrophys. 225, 239-259 (1989).
  17. L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Van der Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5-44 (2003). [CrossRef]
  18. J. P. Burrows, M. Weber, M. Buchwitz, V. Rozanov, A. Ladstätter-Weißenmayer, A. Richter, R. DeBeek, R. Hoogen, K. Bramstedt, K. U. Eichmann, M. Eisinger, and D. Perner, “The global ozone monitoring experiment (GOME): mission concept and first scientific results,” J. Atmos. Sci. 56, 151-175 (1999). [CrossRef]
  19. H. Bovensmann, J. P. Burrows, M. Buchwitz, J. Frerick, S. Noel, V. V. Rozanov, K. V. Chance, and A. P. H. Goede, “SCIAMACHY: mission objectives and measurement modes,” J. Atmos. Sci. 56, 127-150 (1999). [CrossRef]
  20. E. Boesche, P. Stammes, T. Ruhtz, R. Preusker, and J. Fischer, “Effect of aerosol microphysical properties on polarization of skylight: sensitivity study and measurements,” Appl. Opt. 45, 8790-8805 (2006). [CrossRef]
  21. W. H. Knap, L. C. Labonnote, G. Brogniez, and P. Stammes, “Modeling total and polarized reflectances of ice clouds: evaluation by means of POLDER and ATSR-2 measurements,” Appl. Opt. 44, 4060-4073 (2005). [CrossRef]
  22. K. L. Coulson, Polarization and Intensity of Light in the Atmosphere (Deepak, 1988).
  23. K. Sassen, M. K. Griffin, and G. C. Dodd, “Optical scattering and microphysical properties of subvisible cirrus clouds, and climatic implications,” J. Appl. Meteor. 28, 91-98 (1989).
  24. M. I. Mishchenko, I. V. Geogdzhayev, L. Liu, J. A. Ogren, A. A. Lacis, W. B. Rossow, J. W. Hovenier, H. Volten, and O. Muñoz, “Aerosol retrievals from AVHRR radiances: effects of particle nonsphericity and absorption and an updated long-term global climatology of aerosol properties,” J. Quant. Spectrosc. Radiat. Transfer 79-80, 953-972 (2003). [CrossRef]
  25. M. Rast and J. L. Bezy, “ESA medium resolution imaging spectrometer MERIS a review of the instrument and its mission,” Int. J. Remote Sensing 20, 1681-1702 (1999). [CrossRef]
  26. O. P. Hasekamp and J. Landgraf, “Tropospheric ozone information from satellite-based polarization measurements,” J. Geophys. Res. 107, 4326 (2002). [CrossRef]
  27. O. P. Hasekamp, J. Landgraf, and R. van Oss, “The need of polarization modeling for ozone profile retrieval from backscattered sunlight,” J. Geophys. Res. 107, 4692 (2002). [CrossRef]
  28. D. M. Stam, J. F. De Haan, J. W. Hovenier, and I. Aben, “Detecting radiances in the O2A band using polarization sensitive satellite instruments, with application to GOME,” J. Geophys. Res. 105, 22379-22392 (2000). [CrossRef]
  29. B. van Diedenhoven, O. P. Hasekamp, and I. Aben, “Surface pressure retrieval from SCIAMACHY measurements in the O2A band: validation of the measurements and sensitivity on aerosols,” Atmos. Chem. Phys. Discuss. 5, 1469-1499(2005).
  30. H. Bovensmann, J. P. Burrows, M. Buchwitz, J. Frerick, S. Noel, V. V. Rozanov, K. V. Chance, and A. P. H. Goede, “SCIAMACHY: mission objectives and measurement modes,” J. Atmos. Sci. 56, 127-150 (1999). [CrossRef]
  31. N. A. J. Schutgens, and P. Stammes, “Parameterization of Earth's polarization spectrum in the ultra-violet,” J. Quant. Spectrosc. Radiat. Transfer 75, 239-255 (2002). [CrossRef]
  32. L. Duforet, R. Frouin, and P. Dubuisson, “Importance and estimation of aerosol vertical structure in satellite ocean-color remote sensing,” Appl. Opt. 46, 1107-1119 (2007). [CrossRef]
  33. J. L. Deuze, P. Goloub, M. Herman, A. Marchand, G. Perry, S. Susana, and D. Tanre, “Estimate of the aerosol properties over the ocean with POLDER on ADEOS-1,” J. Geophys. Res. 105, 15329-15346 (2000). [CrossRef]
  34. M. I. Mischchenko, B. Cairns, G. Kopp, C. F. Schueler, B. A. Fafaul, J. E. Hansen, R. J. Hooker, T. Itchkawich, H. B. Maring, and L. D. Travis, “Precise and accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory Mission,” Bull. Am. Meteorol. Soc. 88, 677-691(2007).
  35. D. M. O'Brien and P. J. Rayner, “Global observations of the carbon budget, 2, CO2 column from differential absorption of reflected sunlight in the 1.61 μm band of CO2,” J. Geophys. Res. 107, 4354 (2002). [CrossRef]
  36. D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, E. C. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004). [CrossRef]
  37. R. E. Haring, R. Pollock, B. M. Sutin, and D. Crisp, “Development status of the Orbiting Carbon Observatory instrument optical design,” Proc. SPIE 5883, 61-702005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited