OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 19 — Jul. 1, 2008
  • pp: D176–D182

Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging

Patrik Langehanenberg, Björn Kemper, Dieter Dirksen, and Gert von Bally  »View Author Affiliations


Applied Optics, Vol. 47, Issue 19, pp. D176-D182 (2008)
http://dx.doi.org/10.1364/AO.47.00D176


View Full Text Article

Enhanced HTML    Acrobat PDF (4469 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Digital holography enables a multifocus quantitative phase microscopy for the investigation of reflective surfaces and for marker-free live cell imaging. For digital holographic long-term investigations of living cells an automated (subsequent) robust and reliable numerical focus adjustment is of particular importance. Four numerical methods for the determination of the optimal focus position in the numerical reconstruction and propagation of the complex object waves of pure phase objects are characterized, compared, and adapted to the requirements of digital holographic microscopy. Results from investigations of an engineered surface and human pancreas tumor cells demonstrate the applicability of Fourier-weighting- and gradient-operator-based methods for robust and reliable automated subsequent numerical digital holographic focusing.

© 2008 Optical Society of America

OCIS Codes
(180.0180) Microscopy : Microscopy
(090.1995) Holography : Digital holography

History
Original Manuscript: November 2, 2007
Revised Manuscript: February 29, 2008
Manuscript Accepted: March 13, 2008
Published: April 22, 2008

Virtual Issues
Vol. 3, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Patrik Langehanenberg, Björn Kemper, Dieter Dirksen, and Gert von Bally, "Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging," Appl. Opt. 47, D176-D182 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-19-D176


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl.Opt. 38, 6994-7001 (1999). [CrossRef]
  2. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468-470 (2005). [CrossRef] [PubMed]
  3. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high resolution living cell analysis,” Appl. Opt. 43, 6536-6544 (2004). [CrossRef]
  4. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigations on living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11034005 (2006). [CrossRef]
  5. Y. Sun, S. Duthaler, and B. J. Nelson, “Autofocusing in computer microscopy: selecting the optimal focus algorithm,” Microsc. Res. Tech. 65, 139-149 (2004). [CrossRef] [PubMed]
  6. F. Wolf and S. Geley, “A simple and stable autofocusing protocol for long multidimensional live cell microscopy,” J. Microsc. 221, 72-77 (2006). [CrossRef] [PubMed]
  7. M. Liebling and M. Unser, “Autofocus for digital Fresnel holograms by use of a Fresnelet-sparsity criterion,” J. Opt. Soc. Am. A 21, 2424-2430 (2004). [CrossRef]
  8. B. Kemper, D. Carl, A. Höink, G. von Bally, I. Bredebusch, and J. Schnekenburger, “Modular digital holographic microscopy system for marker-free quantitative phase contrast imaging of living cells,” Proc. SPIE 6191, 61910T (2006). [CrossRef]
  9. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2005).
  10. M. Liebling, T. Blu, and M. Unser, “Complex-wave retrieval from a single off-axis hologram,” J Opt Soc Am A 21, 367-377(2004). [CrossRef]
  11. U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002). [CrossRef]
  12. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14, 5895-5908(2006). [CrossRef] [PubMed]
  13. F. C. Groen, I. T. Young, and G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,” Cytometry 6, 81-91 (1985). [CrossRef] [PubMed]
  14. L. Firestone, K. Cook, K. Culp, N. Talsania, and K. Preston Jr, “Comparison of autofocus methods for automated microscopy,” Cytometry 12, 195-206 (1991). [CrossRef] [PubMed]
  15. M. Bravo-Zanoguera, B. v. Massenbach, A. L. Kellner, and J. H. Price, “High-performance autofocus circuit for biological microscopy,” Rev. Sci. Instrum. 69, 3966-3977 (1998). [CrossRef]
  16. M. T. Özgen and T. E. Tuncer, “Object reconstruction from in-line Fresnel holograms without explicit depth focusing,” Opt. Eng. 43, 1300-1310 (2004). [CrossRef]
  17. J.-M. Geusebroek, F. Cornelissen, A. W. M. Smeulders, and H. Geerts, “Robust autofocusing in microscopy,” Cytometry 39, 1-9 (2000). [CrossRef] [PubMed]
  18. A. Thelen, J. Bongartz, D. Giel, S. Frey, and P. Hering, “Iterative focus detection in hologram tomography,” J. Opt. Soc. Am. A 22, 1176-1180 (2005). [CrossRef]
  19. H. P. Elsässer, U. Lehr, B. Agricola, and H. F. Kern, “Establishment, and characterization of two cell lines with different grades of differentiation derived from one primary human pancreatic adenocarcinoma,” Virchows Arch. 61,295-306(1992).
  20. W. Li, N. C. Loomis, Q. Hu, and C. S. Davis, “Focus detection from digital in-line holograms based on spectral l1 norms,” J. Opt. Soc. Am. A 24, 3054-3062 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited