OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 19 — Jul. 1, 2008
  • pp: D28–D37

Effect of different traversal schemes in integral image coding

Nicholas Sgouros, Ioannis Kontaxakis, and Manolis Sangriotis  »View Author Affiliations

Applied Optics, Vol. 47, Issue 19, pp. D28-D37 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1997 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Integral imaging (InIm) is a highly promising technique for the delivery of three-dimensional (3D) image content. During capturing, different views of an object are recorded as an array of elemental images (EIs), which form the integral image. High-resolution InIm requires sensors with increased resolution and produces huge amounts of highly correlated data. In an efficient encoding scheme for InIm compression both inter-EI and intra-EI correlations have to be properly exploited. We present an EI traversal scheme that maximizes the performance of InIm encoders by properly rearranging EIs to increase the intra-EI correlation of jointly coded EIs. This technique can be used to augment performance of both InIm specific and properly adapted general use encoder setups, used in InIm compression. An objective quality metric is also introduced for evaluating the effects of different traversal schemes on the encoder performance.

© 2008 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.6890) Image processing : Three-dimensional image processing
(110.3000) Imaging systems : Image quality assessment
(110.6880) Imaging systems : Three-dimensional image acquisition

Original Manuscript: October 4, 2007
Revised Manuscript: December 26, 2007
Manuscript Accepted: January 14, 2008
Published: February 20, 2008

Nicholas Sgouros, Ioannis Kontaxakis, and Manolis Sangriotis, "Effect of different traversal schemes in integral image coding," Appl. Opt. 47, D28-D37 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Pastoor and M. Wöpking, “3-D displays: a review of current technologies,” Displays 17(2), 100-110 (1997). [CrossRef]
  2. M. Halle, “Autostereoscopic displays and computer graphics,” Comput. Graph. 31(2), 58-62 (1997). [CrossRef]
  3. J.-Y. Son and B. Javidi, “Three-dimensional imaging methods based on multiview images,” J. Display Technol. 1, 125-140 (2005). [CrossRef]
  4. G. Lippmann, “La Photographie integrale,” C. R. Acad. Sci. 146, 446-455 (1908).
  5. J. S. Jang and B. Javidi, “Formation of orthoscopic three dimensional real images in direct pickup one-step integral imaging,” Opt. Eng. 42, 1869-1870 (2003). [CrossRef]
  6. J.-H. Park, Y. Kim, J. Kim, S.-W. Min, and B. Lee, “Three-dimensional display scheme based on integral imaging with three-dimensional information processing,” Opt. Express 12, 6020-6032 (2004). [CrossRef] [PubMed]
  7. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. (Prentice Hall, 2002).
  8. N. P. Sgouros, D. P. Chaikalis, P. G. Papageorgas, and M. S. Sangriotis, “Omnidirectional integral photography images compression using the 3D-DCT,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper DTuA2. [PubMed]
  9. R. Zaharia, A. Aggoun, and M. McCormick, “Adaptive 3D-DCT compression algorithm for continuous parallax 3D integral imaging,” Signal Process. Image Commun. 17, 231-242 (2002). [CrossRef]
  10. N. P. Sgouros, A. G. Andreou, M. S. Sangriotis, P. G. Papageorgas, D. M. Maroulis , and N. G. Theofanous, “Compression of IP images for autostereoscopic 3D imaging applications,” in Proceedings of 3rd International Symposium on Image and Signal Processing and Analysis, S.Loncaric, A. Neri, and H. Babic, ed. (IEEE, 2003), pp. 223-227.
  11. S. Yeom, A. Stern, and B. Javidi, “Compression of 3D color integral images,” Opt. Express 12, 1632-1642 (2004). [CrossRef] [PubMed]
  12. H. Sagan, Space-Filling Curves (Springer-Verlag, 1974).
  13. C. Gotsman and M. Lindenbaum, “On the metric properties of discrete space filling curves,” IEEE Trans. Image Process. 5, 794-797 (1996). [CrossRef]
  14. J. Zhang, S.-I. Kamata, and Y. Ueshige, “A pseudo-Hilbert scan for arbitrarily-sized arrays,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E90-A, 682-690 (2007). [CrossRef]
  15. S. Kamata and Y. Bandoh, “An address generator of a pseudo-Hilbert scan in a rectangle region,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 1997), pp. 707-710. [CrossRef]
  16. K.-L. Chung and L.-C. Chang, “A novel two-phase Hilbert-scan-based search algorithm for block motion estimation using CTF data structure,” Pattern Recogn. 37, 1451-1458 (2004). [CrossRef]
  17. B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz, “Analysis of the clustering properties of the Hilbert space-filling curve,” IEEE Trans. Knowl. Data Eng. 13, 124-141 (2001). [CrossRef]
  18. A. Lempel and J. Ziv, “Compression of two-dimensional data,” IEEE Trans. Inf. Theory IT-32, 2-8 (1986).
  19. D. Salomon, Data Compression, the Complete Reference, 3rd ed. (Springer, 2004).
  20. B. Furht, J. Greenberg, and R. Westwater, Motion Estimation Algorithms for Video Compression (Kluwer Academic, 1997). [CrossRef]
  21. POV-Ray: The Persistence of Vision Raytracer, www.povray.org.
  22. S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Physical modelling of microlens array setup for use in computer generated IP,” in Electronic Imaging 2005 (IS&T, SPIE, 2005), paper 5664A-75.
  23. S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a ray traced model of the capturing optics,” J. Electron. Imaging 15, 043007 (2006). [CrossRef]
  24. G. Passalis, N. Sgouros, S. Athineos, and T. Theoharis, “Enhanced reconstruction of 3D shape and texture from integral photography images,” Appl. Opt. 46, 5311-5320 (2007). [CrossRef] [PubMed]
  25. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600-612 (2004). [CrossRef]
  26. A. Stoica, C. Vertan, and C. Fernandez-Maloigne, “Objective and subjective color image quality evaluation for JPEG 2000 compressed images,” in Proceedings of IEEE International Symposium on Signals, Circuits and Systems (IEEE, 2003), pp. 137-140.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited