OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 19 — Jul. 1, 2008
  • pp: D71–D79

Extended focused imaging for digital holograms of macroscopic three-dimensional objects

Conor P. McElhinney, Bryan M. Hennelly, and Thomas J. Naughton  »View Author Affiliations


Applied Optics, Vol. 47, Issue 19, pp. D71-D79 (2008)
http://dx.doi.org/10.1364/AO.47.000D71


View Full Text Article

Enhanced HTML    Acrobat PDF (8912 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

When a digital hologram is reconstructed, only points located at the reconstruction distance are in focus. We have developed a novel technique for creating an in-focus image of the macroscopic objects encoded in a digital hologram. This extended focused image is created by combining numerical reconstructions with depth information extracted by using our depth-from-focus algorithm. To our knowledge, this is the first technique that creates extended focused images of digital holograms encoding macroscopic objects. We present results for digital holograms containing low- and high-contrast macroscopic objects.

© 2008 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(090.1760) Holography : Computer holography
(100.0100) Image processing : Image processing
(100.2000) Image processing : Digital image processing
(100.6890) Image processing : Three-dimensional image processing

History
Original Manuscript: October 25, 2007
Revised Manuscript: December 30, 2007
Manuscript Accepted: January 11, 2008
Published: March 10, 2008

Citation
Conor P. McElhinney, Bryan M. Hennelly, and Thomas J. Naughton, "Extended focused imaging for digital holograms of macroscopic three-dimensional objects," Appl. Opt. 47, D71-D79 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-19-D71


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Kreis, Handbook of Holographic Interferometry (Wiley-Vch, 2005).
  2. L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. . 26, 1124-1132 (1987).
  3. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2004).
  4. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).
  5. T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124-4132(2002). [CrossRef]
  6. J. Maycock, C. P. McElhinney, B. H. Hennelly, T. J. Naughton, J. B. McDonald, and B. Javidi, “Reconstruction of partially occluded objects encoded in three-dimensional scenes by using digital holograms.” Appl. Opt. 45, 2975-2985 (2006). [CrossRef]
  7. Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94, 636-653 (2006) p. 636.
  8. L. P. Yaroslavskii and N. S. Merzlyakov, Methods of Digital Holography, D. Parsons, trans. (Consultants Bureau, 1980).
  9. D. Kim and B. Javidi, “Distortion-tolerant 3-D object recognition by using single exposure on-axis digital holography,” Opt. Express 12, 5539-5548 (2004). [CrossRef]
  10. B. Javidi and D. Kim, “Three-dimensional-object recognition by use of single-exposure on-axis digital holography,” Opt. Lett. 30, 236-238 (2005). [CrossRef]
  11. B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13, 4492-4506 (2005). [CrossRef]
  12. T. J. Naughton, J. B. McDonald, and B. Javidi, “Efficient compression of Fresnel fields for Internet transmission of three-dimensional images,” Appl. Opt. 42, 4758-4764 (2003). [CrossRef]
  13. I. Yamaguchi, K. Yamamoto, G. A. Mills, and M. Yokota, “Image reconstruction only by phase data in phase-shifting digital holography,” Appl. Opt. 45, 975-983 (2006). [CrossRef]
  14. A. E. Shortt, T. J. Naughton, and B. Javidi, “Compression of digital holograms of three-dimensional objects using wavelets,” Opt. Express 14, 2625-2630 (2006). [CrossRef]
  15. C. P. McElhinney, A. E. Shortt, T. J. Naughton, and B. Javidi, “Blockwise discrete Fourier transform analysis of digital hologram data of three-dimensional objects,” Proc. SPIE 5557, 62-69 (2004).
  16. E. Darakis and J. J. Soraghan, “Reconstruction domain compression of phase-shifting digital holograms,” Appl. Opt. 46, 351-356 (2007). [CrossRef]
  17. N. Bertaux, Y. Frauel, P. Réfrégier, and B. Javidi, “Speckle removal using a maximum-likelihood technique with isoline gray-level regularization,” J. Opt. Soc. Am. A 21, 2283-2291(2004).
  18. J. Maycock, B. H. Hennelly, J. B. McDonald, T. J. Naughton, Y. Frauel, A. Castro, and B. Javidi, “Reduction of speckle in digital holography by discrete Fourier filtering.” J. Opt. Soc. Am. A 24, 1617-1622 (2007). [CrossRef]
  19. T.-C. Poon, “Recent progress in optical scanning holography,” J. Hologr. Speckle 1, 6-25 (2004). [CrossRef]
  20. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070-4075 (2000).
  21. Y. Takari, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990-4996 (1999).
  22. T.-C. Poon, T. Kim, G. Indebetouw, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, “Twin-image elimination experiments for three-dimensional images in optical scanning holography,” Opt. Lett. 25, 215-217 (2000). [CrossRef]
  23. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221-1223 (1998).
  24. L. Xu, X. Peng, J. Miao, and A. Asundi, “Studies of digital microscopic holography with applications to microstructure testing,” Appl. Opt. 40, 5046-5051 (2001). [CrossRef]
  25. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999).
  26. P. Ferraro, G. Coppola, S. Nicola, A. Finizio, and G. Peirattini, “Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time,” Opt. Lett. 28, 1257-1259 (2003). [CrossRef]
  27. G. Pedrini, P. Froning, H. Tiziani, and F. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257-268 (1999). [CrossRef]
  28. C. Mann, L. Yu, C. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693-8698 (2005). [CrossRef]
  29. P. Ferraro, S. Grilli, D. Alfieri, S. D. Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital holography,” Opt. Express 13, 6738-6749 (2005). [CrossRef]
  30. M. Gustafsson and M. Sebesta, “Refractometry of microscopic objects with digital holography,” Appl. Opt. 43, 4796-4801(2004). [CrossRef]
  31. M. Danesh Panah and B. Javidi, “Segmentation of 3D holographic images using bivariate jointly distributed region snake,” Opt. Express 14, 5143-5153 (2006). [CrossRef]
  32. C. P. McElhinney, J. B. McDonald, A. Castro, Y. Frauel, B. Javidi, and T. J. Naughton, “Depth-independent segmentation of three-dimensional objects encoded in single perspectives of digital holograms,” Opt. Lett. 32, 1229-1231 (2007). [CrossRef]
  33. B. Javidi and E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25, 610-612(2000). [CrossRef]
  34. Y. Frauel and B. Javidi, “Neural network for three-dimensional object recognition based on digital holography,” Opt. Lett. 26, 1478-1480 (2001). [CrossRef]
  35. B. Javidi, S. Yeom, I. Moon, and M. Daneshpanah, “Real-time automated 3D sensing, detection and recognition of dynamic biological micro-organic events,” Opt. Express 14, 3806-3829(2006). [CrossRef]
  36. R. J. Pieper and A. Korpel, “Image processing for extended depth of field,” Appl. Opt. 22, 1449-1453 (1983).
  37. L. Ma, H. Wang, Y. Li, and H. Jin, “Numerical reconstruction of digital holograms for three-dimensional shape measurement,” J. Opt. A 6, 396-400 (2004). [CrossRef]
  38. L. Xu, J. Miao, and A. Asundi, “Properties of digital holography based on in-line configuration,” Opt. Eng. 39, 3214-3219(2000).
  39. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693-2703 (1974).
  40. J. Goodman, Introduction to Fourier Optics (Roberts and Company, 2005).
  41. H. J. Caulfield, Handbook of Optical Holography (Academic, 1979).
  42. J. Gillespie and R. King, “The use of self-entropy as a focus measure in digital holography,” Pattern Recogn. Lett. 9, 19-25(1989). [CrossRef]
  43. M. Liebling and M. Unser, “Autofocus for digital Fresnel holograms by use of a Fresnelet-sparsity criterion,” J. Opt. Soc. Am. A 21, 2424-2430 (2004). [CrossRef]
  44. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy,” Opt. Express 14, 5895-5908 (2006). [CrossRef]
  45. E. Malkiel, J. N. Abras and J. Katz, “Automated scanning and measurements of particle distributions within a holographic reconstructed volume,” Meas. Sci. Technol. 15, 601-612(2004).
  46. N. Burns and J. Watson, “Data extraction from underwater holograms of marine organisms,” in OCEANS 2007--Europe (IEEE, 2007), pp. 1-6. [CrossRef]
  47. C. P. McElhinney, B. H. Hennelly, J. B. McDonald, and T. J. Naughton are preparing a manuscript to be titled “Multiple object segmentation in macroscopic three-dimensional scenes from a single perspective using digital holography.”
  48. M. Subbarao, T. Choi, and A. Nikzad,, “Focusing techniques,” Opt. Eng. 32, 2824-2836 (1993).
  49. J. R. Fienup, “Invariant error metrics for image reconstruction,” Appl. Opt. 36, 8352-8357 (1997).
  50. S. Frey, A. Thelen, S. Hirsch, and P. Hering, “Generation of digital textured surface models from hologram recordings,” Appl. Opt. 46, 1986-1993 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited